106 resultados para Water-waves

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface water waves are "modal" waves in which the "physical space" (t, x, y, z) is the product of a propagation space (t, x, y) and a cross space, the z-axis in the vertical direction. We have derived a new set of equations for the long waves in shallow water in the propagation space. When the ratio of the amplitude of the disturbance to the depth of the water is small, these equations reduce to the equations derived by Whitham (1967) by the variational principle. Then we have derived a single equation in (t, x, y)-space which is a generalization of the fourth order Boussinesq equation for one-dimensional waves. In the neighbourhood of a wave froat, this equation reduces to the multidimensional generalization of the KdV equation derived by Shen & Keller (1973). We have also included a systematic discussion of the orders of the various non-dimensional parameters. This is followed by a presentation of a general theory of approximating a system of quasi-linear equations following one of the modes. When we apply this general method to the surface water wave equations in the propagation space, we get the Shen-Keller equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simplified perturbational analysis is employed, together with the application of Green's theorem, to determine the first-order corrections to the reflection and transmission coefficients in the problem of diffraction of surface water waves by a nearly vertical barrier in two basically important cases: (i) when the barrier is partially immersed and (ii) when the barrier is completely submerged. The present analysis produces the desired results fairly easily and relatively quickly as compared with the known integral equation approach to this class of diffraction problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An exact solution is derived for a boundary-value problem for Laplace's equation which is a generalization of the one occurring in the course of solution of the problem of diffraction of surface water waves by a nearly vertical submerged barrier. The method of solution involves the use of complex function theory, the Schwarz reflection principle, and reduction to a system of two uncoupled Riemann-Hilbert problems. Known results, representing the reflection and transmission coefficients of the water wave problem involving a nearly vertical barrier, are derived in terms of the shape function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a modified Green's function technique the two well-known basic problems of scattering of surface water waves by vertical barriers are reduced to the problem of solving a pair of uncoupled integral equations involving the “jump” and “sum” of the limiting values of the velocity potential on the two sides of the barriers in each case. These integral equations are then solved, in closed form, by the aid of an integral transform technique involving a general trigonometric kernel as applicable to the problems associated with a radiation condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utilizing the commutativity property of the Cartesian coordinate differential operators arising in the boundary conditions associated with the propagation of surface water waves against a vertical cliff, under the assumptions of linearized theory, the problem of obliquely incident surface waves is considered for solution. The case of normal incidence, handled by previous workers follow as a particular limiting case of the present problem, which exhibits a source/sink type behavior of the velocity potential at the shore-line. An independent method of attack is also presented to handle the case of normal incidence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problems of obliquely incident surface water waves against a vertical cliff have been handled in both the cases of water of infinite as well as finite depth by straightforward uses of appropriate Havelock-type expansion theorems. The logarithmic singularity along the shore-line has been incorporated in a direct manner, by suitably representing the Dirac's delta function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A class of I boundary value problems involving propagation of two-dimensional surface water waves, associated with water of uniform finite depth, against a plane vertical wave maker is investigated under the assumption that the surface is covered by a thin sheet of ice. It is assumed that the ice-cover behaves like a thin isotropic elastic plate. Then the problems under consideration lead to those of solving the two-dimensional Laplace equation in a semi-infinite strip, under Neumann boundary conditions on the vertical boundary as well as on one of the horizontal boundaries, representing the bottom of the fluid region, and a condition involving upto fifth order derivatives of the unknown function on the top horizontal ice-covered boundary, along with the two appropriate edge-conditions, at the ice-covered corner, ensuring the uniqueness of the solutions. The mixed boundary value problems are solved completely, by exploiting the regularity property of the Fourier cosine transform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Closed-form analytical expressions are derived for the reflection and transmission coefficients for the problem of scattering of surface water waves by a sharp discontinuity in the surface-boundary-conditions, for the case of deep water. The method involves the use of the Havelock-type expansion of the velocity potential along with an analysis to solve a Carleman-type singular integral equation over a semi-infinite range. This method of solution is an alternative to the Wiener-Hopf technique used previously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scattering of water waves by a sphere in a two-layer fluid, where the upper layer has an ice-cover modelled as an elastic plate of very small thickness, while the lower one has a rigid horizontal bottom surface, is investigated within the framework of linearized water wave theory. The effects of surface tension at the surface of separation is neglected. There exist two modes of time-harmonic waves - the one with lower wave number propagating along the ice-cover and the one with higher wave number along the interface. Method of multipole expansions is used to find the particular solution for the problem of wave scattering by a submerged sphere placed in either of the layers. The exciting forces for vertical and horizontal directions are derived and plotted against different values of the wave number for different submersion depths of the sphere and flexural rigidity of the ice-cover. When the flexural rigidity and the density of the ice-cover are taken to be zero, the numerical results for the exciting forces for the problem with free surface are recovered as particular cases. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper the classical problem of water wave scattering by two partially immersed plane vertical barriers submerged in deep water up to the same depth is investigated. This problem has an exact but complicated solution and an approximate solution in the literature of linearised theory of water waves. Using the Havelock expansion for the water wave potential, the problem is reduced here to solving Abel integral equations having exact solutions. Utilising these solutions,two sets of expressions for the reflection and transmission coefficients are obtained in closed forms in terms of computable integrals in contrast to the results given in the literature which,involved six complicated integrals in terms of elliptic functions. The two different expressions for each coefficient produce almost the same numerical results although it has not been possible to prove their equivalence analytically. The reflection coefficient is depicted against the wave number in a number of figures which almost coincide with the figures available in the literature wherein the problem was solved approximately by employing complementary approximations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A model equation is derived to study trapped nonlinear waves with a turning effect, occurring in disturbances induced on a two-dimensional steady flow. Only unimodal disturbances under the short wave assumption are considered, when the wave front of the induced disturbance is plane. In the neighbourhood of certain special points of sonic-type singularity, the disturbances are governed by a single first-order partial differential equation in two independent variables. The equation depends on the steady flow through three parameters, which are determined by the variations of velocity and depth, for example (in the case of long surface water waves), along and perpendicular to the wave front. These parameters help us to examine various relative effects. The presence of shocks in a continuously accelerating or decelerating flow has been studied in detail.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A large class of scattering problems of surface water waves by vertical barriers lead to mixed boundary value problems for Laplace equation. Specific attentions are paid, in the present article, to highlight an analytical method to handle this class of problems of surface water wave scattering, when the barriers in question are non-reflecting in nature. A new set of boundary conditions is proposed for such non-reflecting barriers and tile resulting boundary value problems are handled in the linearized theory of water waves. Three basic poblems of scattering by vertical barriers are solved. The present new theory of non-reflecting vertical barriers predict new transmission coefficients and tile solutions of tile mathematical problems turn out to be extremely simple and straight forward as compared to the solution for other types of barriers handled previously.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a mixed-type Fourier transform of a general form in the case of water of infinite depth and the method of eigenfunction expansion in the case of water of finite depth, several boundary-value problems involving the propagation and scattering of time harmonic surface water waves by vertical porous walls have been fully investigated, taking into account the effect of surface tension also. Known results are recovered either directly or as particular cases of the general problems under consideration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exact multinomial solutions of the beach equation for shallow water waves on a uniformly sloping beach are found and related to solution of the same equation found earlier by other investigators, using integral transform techniques. The use of these solutions for a general initialvalue problem for the equation under investigation is briefly discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exact multinomial solutions of the beach equation for shallow water waves on a uniformly sloping beach are found and related to solution of the same equation found earlier by other investigators, using integral transform techniques. The use of these solutions for a general initialvalue problem for the equation under investigation is briefly discussed.