7 resultados para Visualização Big Data

em Indian Institute of Science - Bangalore - Índia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The performance of prediction models is often based on ``abstract metrics'' that estimate the model's ability to limit residual errors between the observed and predicted values. However, meaningful evaluation and selection of prediction models for end-user domains requires holistic and application-sensitive performance measures. Inspired by energy consumption prediction models used in the emerging ``big data'' domain of Smart Power Grids, we propose a suite of performance measures to rationally compare models along the dimensions of scale independence, reliability, volatility and cost. We include both application independent and dependent measures, the latter parameterized to allow customization by domain experts to fit their scenario. While our measures are generalizable to other domains, we offer an empirical analysis using real energy use data for three Smart Grid applications: planning, customer education and demand response, which are relevant for energy sustainability. Our results underscore the value of the proposed measures to offer a deeper insight into models' behavior and their impact on real applications, which benefit both data mining researchers and practitioners.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Scalable stream processing and continuous dataflow systems are gaining traction with the rise of big data due to the need for processing high velocity data in near real time. Unlike batch processing systems such as MapReduce and workflows, static scheduling strategies fall short for continuous dataflows due to the variations in the input data rates and the need for sustained throughput. The elastic resource provisioning of cloud infrastructure is valuable to meet the changing resource needs of such continuous applications. However, multi-tenant cloud resources introduce yet another dimension of performance variability that impacts the application's throughput. In this paper we propose PLAStiCC, an adaptive scheduling algorithm that balances resource cost and application throughput using a prediction-based lookahead approach. It not only addresses variations in the input data rates but also the underlying cloud infrastructure. In addition, we also propose several simpler static scheduling heuristics that operate in the absence of accurate performance prediction model. These static and adaptive heuristics are evaluated through extensive simulations using performance traces obtained from Amazon AWS IaaS public cloud. Our results show an improvement of up to 20% in the overall profit as compared to the reactive adaptation algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In big data image/video analytics, we encounter the problem of learning an over-complete dictionary for sparse representation from a large training dataset, which cannot be processed at once because of storage and computational constraints. To tackle the problem of dictionary learning in such scenarios, we propose an algorithm that exploits the inherent clustered structure of the training data and make use of a divide-and-conquer approach. The fundamental idea behind the algorithm is to partition the training dataset into smaller clusters, and learn local dictionaries for each cluster. Subsequently, the local dictionaries are merged to form a global dictionary. Merging is done by solving another dictionary learning problem on the atoms of the locally trained dictionaries. This algorithm is referred to as the split-and-merge algorithm. We show that the proposed algorithm is efficient in its usage of memory and computational complexity, and performs on par with the standard learning strategy, which operates on the entire data at a time. As an application, we consider the problem of image denoising. We present a comparative analysis of our algorithm with the standard learning techniques that use the entire database at a time, in terms of training and denoising performance. We observe that the split-and-merge algorithm results in a remarkable reduction of training time, without significantly affecting the denoising performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We share our experience in planning, designing and deploying a wireless sensor network of one square kilometre area. Environmental data such as soil moisture, temperature, barometric pressure, and relative humidity are collected in this area situated in the semi-arid region of Karnataka, India. It is a hope that information derived from this data will benefit the marginal farmer towards improving his farming practices. Soon after establishing the need for such a project, we begin by showing the big picture of such a data gathering network, the software architecture we have used, the range measurements needed for determining the sensor density, and the packaging issues that seem to play a crucial role in field deployments. Our field deployment experiences include designing with intermittent grid power, enhancing software tools to aid quicker and effective deployment, and flash memory corruption. The first results on data gathering look encouraging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The memory subsystem is a major contributor to the performance, power, and area of complex SoCs used in feature rich multimedia products. Hence, memory architecture of the embedded DSP is complex and usually custom designed with multiple banks of single-ported or dual ported on-chip scratch pad memory and multiple banks of off-chip memory. Building software for such large complex memories with many of the software components as individually optimized software IPs is a big challenge. In order to obtain good performance and a reduction in memory stalls, the data buffers of the application need to be placed carefully in different types of memory. In this paper we present a unified framework (MODLEX) that combines different data layout optimizations to address the complex DSP memory architectures. Our method models the data layout problem as multi-objective genetic algorithm (GA) with performance and power being the objectives and presents a set of solution points which is attractive from a platform design viewpoint. While most of the work in the literature assumes that performance and power are non-conflicting objectives, our work demonstrates that there is significant trade-off (up to 70%) that is possible between power and performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since streaming data keeps coming continuously as an ordered sequence, massive amounts of data is created. A big challenge in handling data streams is the limitation of time and space. Prototype selection on streaming data requires the prototypes to be updated in an incremental manner as new data comes in. We propose an incremental algorithm for prototype selection. This algorithm can also be used to handle very large datasets. Results have been presented on a number of large datasets and our method is compared to an existing algorithm for streaming data. Our algorithm saves time and the prototypes selected gives good classification accuracy.