3 resultados para Visual mosaic systems
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper we propose a hypothetical scheme for recognizing the alphanumerics. The scheme is based on the known physiological structure of the visual cortex and the concept of a short Lino extractor nouron (SLEN). We assumo four basic typca of such units for extracting vertical, horizontal, right and left inclined straight line segments. The patterns reconstructed from the scheme show perfect agreement with the test patterns. The model indicates that the recognition of letters T and H requires extraction of the largest number of features.
Resumo:
In this paper, we consider applying derived knowledge base regarding the sensitivity and specificity of damage(s) to be detected by an SHM system being designed and qualified. These efforts are necessary toward developing capabilities in SHM system to classify reliably various probable damages through sequence of monitoring, i.e., damage precursor identification, detection of damage and monitoring its progression. We consider the particular problem of visual and ultrasonic NDE based SHM system design requirements, where the damage detection sensitivity and specificity data definitions for a class of structural components are established. Methodologies for SHM system specification creation are discussed in details. Examples are shown to illustrate how the physics of damage detection scheme limits particular damage detection sensitivity and specificity and further how these information can be used in algorithms to combine various different NDE schemes in an SHM system to enhance efficiency and effectiveness. Statistical and data driven models to determine the sensitivity and probability of damage detection (POD) has been demonstrated for plate with varying one-sided line crack using optical and ultrasonic based inspection techniques.
Resumo:
The central problem in the study of glass-forming liquids and other glassy systems is the understanding of the complex structural relaxation and rapid growth of relaxation times seen on approaching the glass transition. A central conceptual question is whether one can identify one or more growing length scale(s) associated with this behavior. Given the diversity of molecular glass-formers and a vast body of experimental, computational and theoretical work addressing glassy behavior, a number of ideas and observations pertaining to growing length scales have been presented over the past few decades, but there is as yet no consensus view on this question. In this review, we will summarize the salient results and the state of our understanding of length scales associated with dynamical slow down. After a review of slow dynamics and the glass transition, pertinent theories of the glass transition will be summarized and a survey of ideas relating to length scales in glassy systems will be presented. A number of studies have focused on the emergence of preferred packing arrangements and discussed their role in glassy dynamics. More recently, a central object of attention has been the study of spatially correlated, heterogeneous dynamics and the associated length scale, studied in computer simulations and theoretical analysis such as inhomogeneous mode coupling theory. A number of static length scales have been proposed and studied recently, such as the mosaic length scale discussed in the random first-order transition theory and the related point-to-set correlation length. We will discuss these, elaborating on key results, along with a critical appraisal of the state of the art. Finally we will discuss length scales in driven soft matter, granular fluids and amorphous solids, and give a brief description of length scales in aging systems. Possible relations of these length scales with those in glass-forming liquids will be discussed.