15 resultados para Visual Object Recognition

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some experimental results on the recognition of three-dimensional wire-frame objects are presented. In order to overcome the limitations of a recent model, which employs radial basis functions-based neural networks, we have proposed a hybrid learning system for object recognition, featuring: an optimization strategy (simulated annealing) in order to avoid local minima of an energy functional; and an appropriate choice of centers of the units. Further, in an attempt to achieve improved generalization ability, and to reduce the time for training, we invoke the principle of self-organization which utilises an unsupervised learning algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Designing a robust algorithm for visual object tracking has been a challenging task since many years. There are trackers in the literature that are reasonably accurate for many tracking scenarios but most of them are computationally expensive. This narrows down their applicability as many tracking applications demand real time response. In this paper, we present a tracker based on random ferns. Tracking is posed as a classification problem and classification is done using ferns. We used ferns as they rely on binary features and are extremely fast at both training and classification as compared to other classification algorithms. Our experiments show that the proposed tracker performs well on some of the most challenging tracking datasets and executes much faster than one of the state-of-the-art trackers, without much difference in tracking accuracy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we propose a hypothetical scheme for recognizing the alphanumerics. The scheme is based on the known physiological structure of the visual cortex and the concept of a short Lino extractor nouron (SLEN). We assumo four basic typca of such units for extracting vertical, horizontal, right and left inclined straight line segments. The patterns reconstructed from the scheme show perfect agreement with the test patterns. The model indicates that the recognition of letters T and H requires extraction of the largest number of features.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We perceive objects as containing a variety of attributes: local features, relations between features, internal details, and global properties. But we know little about how they combine. Here, we report a remarkably simple additive rule that governs how these diverse object attributes combine in vision. The perceived dissimilarity between two objects was accurately explained as a sum of (a) spatially tuned local contour-matching processes modulated by part decomposition; (b) differences in internal details, such as texture; (c) differences in emergent attributes, such as symmetry; and (d) differences in global properties, such as orientation or overall configuration of parts. Our results elucidate an enduring question in object vision by showing that the whole object is not a sum of its parts but a sum of its many attributes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual tracking has been a challenging problem in computer vision over the decades. The applications of Visual Tracking are far-reaching, ranging from surveillance and monitoring to smart rooms. Mean-shift (MS) tracker, which gained more attention recently, is known for tracking objects in a cluttered environment and its low computational complexity. The major problem encountered in histogram-based MS is its inability to track rapidly moving objects. In order to track fast moving objects, we propose a new robust mean-shift tracker that uses both spatial similarity measure and color histogram-based similarity measure. The inability of MS tracker to handle large displacements is circumvented by the spatial similarity-based tracking module, which lacks robustness to object's appearance change. The performance of the proposed tracker is better than the individual trackers for tracking fast-moving objects with better accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our everyday visual experience frequently involves searching for objects in clutter. Why are some searches easy and others hard? It is generally believed that the time taken to find a target increases as it becomes similar to its surrounding distractors. Here, I show that while this is qualitatively true, the exact relationship is in fact not linear. In a simple search experiment, when subjects searched for a bar differing in orientation from its distractors, search time was inversely proportional to the angular difference in orientation. Thus, rather than taking search reaction time (RT) to be a measure of target-distractor similarity, we can literally turn search time on its head (i.e. take its reciprocal 1/RT) to obtain a measure of search dissimilarity that varies linearly over a large range of target-distractor differences. I show that this dissimilarity measure has the properties of a distance metric, and report two interesting insights come from this measure: First, for a large number of searches, search asymmetries are relatively rare and when they do occur, differ by a fixed distance. Second, search distances can be used to elucidate object representations that underlie search - for example, these representations are roughly invariant to three-dimensional view. Finally, search distance has a straightforward interpretation in the context of accumulator models of search, where it is proportional to the discriminative signal that is integrated to produce a response. This is consistent with recent studies that have linked this distance to neuronal discriminability in visual cortex. Thus, while search time remains the more direct measure of visual search, its reciprocal also has the potential for interesting and novel insights. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How do we perform rapid visual categorization?It is widely thought that categorization involves evaluating the similarity of an object to other category items, but the underlying features and similarity relations remain unknown. Here, we hypothesized that categorization performance is based on perceived similarity relations between items within and outside the category. To this end, we measured the categorization performance of human subjects on three diverse visual categories (animals, vehicles, and tools) and across three hierarchical levels (superordinate, basic, and subordinate levels among animals). For the same subjects, we measured their perceived pair-wise similarities between objects using a visual search task. Regardless of category and hierarchical level, we found that the time taken to categorize an object could be predicted using its similarity to members within and outside its category. We were able to account for several classic categorization phenomena, such as (a) the longer times required to reject category membership; (b) the longer times to categorize atypical objects; and (c) differences in performance across tasks and across hierarchical levels. These categorization times were also accounted for by a model that extracts coarse structure from an image. The striking agreement observed between categorization and visual search suggests that these two disparate tasks depend on a shared coarse object representation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a fast learning neural network classifier for human action recognition. The proposed classifier is a fully complex-valued neural network with a single hidden layer. The neurons in the hidden layer employ the fully complex-valued hyperbolic secant as an activation function. The parameters of the hidden layer are chosen randomly and the output weights are estimated analytically as a minimum norm least square solution to a set of linear equations. The fast leaning fully complex-valued neural classifier is used for recognizing human actions accurately. Optical flow-based features extracted from the video sequences are utilized to recognize 10 different human actions. The feature vectors are computationally simple first order statistics of the optical flow vectors, obtained from coarse to fine rectangular patches centered around the object. The results indicate the superior performance of the complex-valued neural classifier for action recognition. The superior performance of the complex neural network for action recognition stems from the fact that motion, by nature, consists of two components, one along each of the axes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of extracting a signature representation of similar entities employing covariance descriptors. Covariance descriptors can efficiently represent objects and are robust to scale and pose changes. We posit that covariance descriptors corresponding to similar objects share a common geometrical structure which can be extracted through joint diagonalization. We term this diagonalizing matrix as the Covariance Profile (CP). CP can be used to measure the distance of a novel object to an object set through the diagonality measure. We demonstrate how CP can be employed on images as well as for videos, for applications such as face recognition and object-track clustering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a machine learning approach for subject independent human action recognition using depth camera, emphasizing the importance of depth in recognition of actions. The proposed approach uses the flow information of all 3 dimensions to classify an action. In our approach, we have obtained the 2-D optical flow and used it along with the depth image to obtain the depth flow (Z motion vectors). The obtained flow captures the dynamics of the actions in space time. Feature vectors are obtained by averaging the 3-D motion over a grid laid over the silhouette in a hierarchical fashion. These hierarchical fine to coarse windows capture the motion dynamics of the object at various scales. The extracted features are used to train a Meta-cognitive Radial Basis Function Network (McRBFN) that uses a Projection Based Learning (PBL) algorithm, referred to as PBL-McRBFN, henceforth. PBL-McRBFN begins with zero hidden neurons and builds the network based on the best human learning strategy, namely, self-regulated learning in a meta-cognitive environment. When a sample is used for learning, PBLMcRBFN uses the sample overlapping conditions, and a projection based learning algorithm to estimate the parameters of the network. The performance of PBL-McRBFN is compared to that of a Support Vector Machine (SVM) and Extreme Learning Machine (ELM) classifiers with representation of every person and action in the training and testing datasets. Performance study shows that PBL-McRBFN outperforms these classifiers in recognizing actions in 3-D. Further, a subject-independent study is conducted by leave-one-subject-out strategy and its generalization performance is tested. It is observed from the subject-independent study that McRBFN is capable of generalizing actions accurately. The performance of the proposed approach is benchmarked with Video Analytics Lab (VAL) dataset and Berkeley Multimodal Human Action Database (MHAD). (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peripherally triarylborane decorated porphyrin (2) and its Zn(II) complex (3) have been synthesized. Compound 3 contains of two different Lewis acidic binding sites (Zn(II) and boron center). Unlike all previously known triarylborane based sensors, the optical responses of 3 toward fluoride and cyanide are distinctively different, thus enabling the discrimination of these two interfering anions. Metalloporphyrin 3 shows a multiple channel fluorogenic response toward fluoride and cyanide and also a selective visual colorimetric response toward cyanide. By comparison with model systems and from detailed photophysical studies on 2 and 3, we conclude that the preferential binding of fluoride occurs at the peripheral borane moieties resulting in the cessation of the EET (electronic energy transfer) process from borane to porphyrin core and with negligible negetive cooperative effects. On the other hand, cyanide binding occurs at the Zn(II) core leading to drastic changes in its absorption behavior which can be followed by the naked eye. Such changes are not observed when the boryl substituent is absent (e.g., Zn-TPP and TPP). Compounds 2 and 3 were also found to be capable of extracting fluoride from aqueous medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we showed that a freshwater fish, the climbing perch (Anabas testudineus) is incapable of using chemical communication but employs visual cues to acquire familiarity and distinguish a familiar group of conspecifics from an unfamiliar one. Moreover, the isolation of olfactory signals from visual cues did not affect the recognition and preference for a familiar shoal in this species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose to develop a 3-D optical flow features based human action recognition system. Optical flow based features are employed here since they can capture the apparent movement in object, by design. Moreover, they can represent information hierarchically from local pixel level to global object level. In this work, 3-D optical flow based features a re extracted by combining the 2-1) optical flow based features with the depth flow features obtained from depth camera. In order to develop an action recognition system, we employ a Meta-Cognitive Neuro-Fuzzy Inference System (McFIS). The m of McFIS is to find the decision boundary separating different classes based on their respective optical flow based features. McFIS consists of a neuro-fuzzy inference system (cognitive component) and a self-regulatory learning mechanism (meta-cognitive component). During the supervised learning, self-regulatory learning mechanism monitors the knowledge of the current sample with respect to the existing knowledge in the network and controls the learning by deciding on sample deletion, sample learning or sample reserve strategies. The performance of the proposed action recognition system was evaluated on a proprietary data set consisting of eight subjects. The performance evaluation with standard support vector machine classifier and extreme learning machine indicates improved performance of McFIS is recognizing actions based of 3-D optical flow based features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a technique for video object segmentation using patch seams across frames. Typically, seams, which are connected paths of low energy, are utilised for retargeting, where the primary aim is to reduce the image size while preserving the salient image contents. Here, we adapt the formulation of seams for temporal label propagation. The energy function associated with the proposed video seams provides temporal linking of patches across frames, to accurately segment the object. The proposed energy function takes into account the similarity of patches along the seam, temporal consistency of motion and spatial coherency of seams. Label propagation is achieved with high fidelity in the critical boundary regions, utilising the proposed patch seams. To achieve this without additional overheads, we curtail the error propagation by formulating boundary regions as rough-sets. The proposed approach out-perform state-of-the-art supervised and unsupervised algorithms, on benchmark datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image and video analysis requires rich features that can characterize various aspects of visual information. These rich features are typically extracted from the pixel values of the images and videos, which require huge amount of computation and seldom useful for real-time analysis. On the contrary, the compressed domain analysis offers relevant information pertaining to the visual content in the form of transform coefficients, motion vectors, quantization steps, coded block patterns with minimal computational burden. The quantum of work done in compressed domain is relatively much less compared to pixel domain. This paper aims to survey various video analysis efforts published during the last decade across the spectrum of video compression standards. In this survey, we have included only the analysis part, excluding the processing aspect of compressed domain. This analysis spans through various computer vision applications such as moving object segmentation, human action recognition, indexing, retrieval, face detection, video classification and object tracking in compressed videos.