61 resultados para Violence against Civilian
em Indian Institute of Science - Bangalore - Índia
Resumo:
Haemagglutinin (HA) and fusion (F) proteins of peste-des-petits-ruminants virus (PPRV) and rinderpest virus (RPV) were purified by immunoaffinity chromatography. The purified proteins were characterized by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE). Rabbit hyperimmune sera were raised against the purified HA and F proteins and assayed by enzyme-linked immunosorbent assay (ELISA), haemagglutination-inhibition (HAI) and virus neutralization (VN) tests. The immunized animals were challenged with a virulent lapinized (rabbit-adapted) strain of RPV: Both HA and F proteins of PPRV protected rabbits against a lethal challenge with lapinized RPV. As expected, RPV HA and F proteins also conferred a similar protection against the homologous challenge. The postchallenge antibody responses were of a true anamnestic type.
Resumo:
A strong-coupling expansion for the Green's functions, self-energies, and correlation functions of the Bose-Hubbard model is developed. We illustrate the general formalism, which includes all possible (normal-phase) inhomogeneous effects in the formalism, such as disorder or a trap potential, as well as effects of thermal excitations. The expansion is then employed to calculate the momentum distribution of the bosons in the Mott phase for an infinite homogeneous periodic system at zero temperature through third order in the hopping. By using scaling theory for the critical behavior at zero momentum and at the critical value of the hopping for the Mott insulator–to–superfluid transition along with a generalization of the random-phase-approximation-like form for the momentum distribution, we are able to extrapolate the series to infinite order and produce very accurate quantitative results for the momentum distribution in a simple functional form for one, two, and three dimensions. The accuracy is better in higher dimensions and is on the order of a few percent relative error everywhere except close to the critical value of the hopping divided by the on-site repulsion. In addition, we find simple phenomenological expressions for the Mott-phase lobes in two and three dimensions which are much more accurate than the truncated strong-coupling expansions and any other analytic approximation we are aware of. The strong-coupling expansions and scaling-theory results are benchmarked against numerically exact quantum Monte Carlo simulations in two and three dimensions and against density-matrix renormalization-group calculations in one dimension. These analytic expressions will be useful for quick comparison of experimental results to theory and in many cases can bypass the need for expensive numerical simulations.
Resumo:
In this study, sliding experiments were conducted using pure magnesium pins against steel plates using an inclined pin-on-plate sliding tester. The inclination angle of the plate was varied in the tests and for each inclination angle, the pins were slid both perpendicular and parallel to the unidirectional grinding marks direction under both dry and lubricated conditions. SEM was used to study morphology of the transfer layer formed on the plates. Surface roughness of plates was measured using an optical profilometer. Results showed that the friction, amplitude of stick-slip motion and transfer layer formation significantly depend on both inclination angle and grinding marks direction of the plates. These variations could be attributed to the changes in the level of plowing friction taking place at the asperity level during sliding.
Resumo:
A riboflavin carrier protein isolated from chickens cross-reacts with a gestation-specific rodent carrier for riboflavin. Active immunization of female rats of proved fertility with the purified chicken carrier protein completely yet reversibly suppressed early pregnancy without impairing implantation per se. Concurrently there were no discernible adverse effects on maternal health in terms of weight gain, vitamin status, and fertility.
Resumo:
Water stress resulted in a specific response leading to a large and significant increase (80-fold) in free proline content of ragi (Eleusine coracana) leaves and seedlings. L-Proline protected ornithine aminotransferase, an enzyme in the pathway for proline biosynthesis, isolated from normal and stressed ragi leaves against heat inactivation and denaturation by urea and guanidinium chloride. The protection of the stressed enzyme by L-proline was much more complete than that of the enzyme isolated from normal leaves. While L-ornithine, one of the substrates, protected the stressed enzyme against inactivation, it enhanced the rate of inactivation of the normal enzyme. α-Ketoglutarate protected both the normal and stressed enzyme against inactivation and denaturation. These results support the suggestion that ornithine aminotransferase has undergone a structural alteration during water stress. In view of the causal relationship between elevated temperature and water stress of plants under natural conditions, the protection afforded by proline against inactivation and denaturation of the enzyme from stressed leaves assumes significance. These results provide an explanation for a possible functional importance of proline accumulation during water stress.
Resumo:
Chromomycin A3, mithramycin, olivomycin and actinomycin D, four antitumor antibiotics inhibit growth of Yoshida ascites sarcoma (YAS). The antibiotic treated tumor-free rats exhibit antitumor immunity as judged by rejection of subsequent tumor transplant. The lymphocytes from immune rats are able to inhibit tumor growth in syngenic animals.
Resumo:
1-Acyl-2-succinyl glycero-3-phosphorylcholine (GPC) was synthesized and its properties described. Although 1-acyl-2-succinyl GPC is a good substrate for succinate dehydrogenase, experiments on the incorporation of [2,3-14C]succinate into mitochondrial lipids gave no evidence to indicate that it is an intermediate in the enzymic oxidation of succinate to fumarate, as has been suggested earlier.
Resumo:
Antitubercular treatment is directed against actively replicating organisms. There is an urgent need to develop drugs targeting persistent subpopulations of Mycobacterium tuberculosis. The DevR response regulator is believed to play a key role in bacterial dormancy adaptation during hypoxia. We developed a homology-based model of DevR and used it for the rational design of inhibitors. A phenylcoumarin derivative (compound 10) identified by in silico pharmacophore-based screening of 2.5 million compounds employing protocols with some novel features including a water-based pharmacophore query, was characterized further. Compound 10 inhibited DevR binding to target DNA, down-regulated dormancy genes transcription, and drastically reduced survival of hypoxic but not nutrient-starved dormant bacteria or actively growing organ ` isms. Our findings suggest that compound 10 ``locks'' DevR in an inactive conformation that is unable to bind cognate DNA and induce the dormancy regulon. These results provide proof-of-concept for DevR as a novel target to develop molecules with sterilizing activity against tubercle bacilli.
Resumo:
We have previously reported that Lyt(2+) cytotoxic T lymphocytes (CTL) can be raised against Japanese encephalitis virus (JEV) in BALB/c mice. In order to confirm the presence of H-2K(d)-restricted CTL and to examine their cross-recognition of West Wile virus (WNV), we tested the capacity of anti-JEV CTL to lyse uninfected syngeneic target cells that were pulsed with synthetic peptides. The sequence of the synthetic peptides was predicted based upon the H-2K(d) binding consensus motif. We show here that preincubation of uninfected syngeneic targets (P388D1) with JEV NS1- and NS3-derived peptides [NS1 (891-899) and NS3 (1804-1812)], but not with JEV NS5-derived peptide [NS5 (3370-3378)], partially sensitized them for lysis by polyclonal anti-JEV CTL. These results indicate the CTL recognition of NS1- and NS3-derived peptides of JEV.
Resumo:
In this paper, the effect of some commonly used antithyroid drugs and their analogues on peroxynitrite-mediated nitration of proteins is described. The nitration of tyrosine residues in bovine serum albumin (BSA) and cytochromec was studied by Western blot analysis. These studies reveal that the antithyroid drugs methimazole (MMI), 6-n-propyl-2-thiouracil (PTU), and 6-methyl-2-thiouracil (MTU), which contain thione moieties, significantly reduce the tyrosine nitration of both BSA and cytochrome c. While MMI exhibits good peroxynitrite (PN) scavenging activity, the thiouracil compounds PTU and MTU are slightly less effective than MMI. The S- and Se-methylated compounds show a weak inhibitory effect in the nitration of tyrosine, indicating that the presence of a thione or selone moiety is important for an efficient inhibition. Similarly, the replacement of N-H moiety in MMI by N-methyl or N-m-methoxybenzyl substituents dramatically reduces the antioxidant activity of the parent compound. Theoretical studies indicate that the substitution of N-H moiety by N-Me significantly increases the energy required for the oxidation of sulfur center by PN. However, such substitution in the selenium analogue of MMI increases the activity of parent compound. This is due to the facile oxidation of the selone moiety to the corresponding selenenic and seleninic acids. Unlike N,N'-disubstituted thiones, the corresponding selones efficiently scavenge PN, as they predominantly exist in their zwitterionic forms in which the selenium atom carries a large negative charge.
Resumo:
Grewia tiliaefolia is widely used in traditional Indian medicines to cure jaundice, biliousness, dysentery and the diseases of blood. Bioassay-guided fractionation of methanolic extract of the G. tiliaefolia bark has resulted in the isolation of D-erythro-2-hexenoic acid gamma-lactone (EHGL) and gulonic acid gamma-lactone (GAGL). Hepatoprotective activity of the methanolic extract and the isolated constituents were evaluated against CCl4-induced hepatotoxicity in rats. The treatment with methanolic extract, EHGL and GAGL at oral doses of 100, 150 and 60 mg/kg respectively with concomitant CCl4 intraperitoneal injection (I ml/kg) significantly reduced the elevated plasma levels of aminotransferases, alkaline phosphatase and the incidence of liver necrosis compared with the CCl4-injected group without affecting the concentrations of serum bilirubin and hepatic markers. EHGL and GAGL significantly inhibited the elevated levels of thiobarbituric acid reactive substances and glutathione in liver homogenates. Histology of the liver tissues of the extract and isolated constituents treated groups showed the presence of normal hepatic cords, absence of necrosis and fatty infiltration as similar to the normal control. The results revealed that the hepatoprotective activity of EHGL is significant as similar to the standard drug silymarin. To clarify the influence of the extract and isolated constituents on the protection of oxidative-hepatic damage, we examined in vitro antioxidant properties of the test compounds. The extract and the constituents showed significant free radical scavenging activity. These results suggest that the extract as well as the constituents could protect the hepatocytes from CCl4-induced liver damage perhaps, by their anti-oxidative effect on hepatocytes, hence eliminating the deleterious effects of toxic metabolites from CCl4, (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We have recently implicated heat shock protein 90 from Plasmodium falciparum (PfHsp90) as a potential drug target against malaria. Using inhibitors specific to the nucleotide binding domain of Hsp90, we have shown potent growth inhibitory effects on development of malarial parasite in human erythrocytes. To gain better understanding of the vital role played by PfHsp90 in parasite growth, we have modeled its three dimensional structure using recently described full length structure of yeast Hsp90. Sequence similarity found between PfHsp90 and yeast Hsp90 allowed us to model the core structure with high confidence. The superimposition of the predicted structure with that of the template yeast Hsp90 structure reveals an RMSD of 3.31 angstrom. The N-terminal and middle domains showed the least RMSD (1.76 angstrom) while the more divergent C-terminus showed a greater RMSD (2.84 angstrom) with respect to the template. The structure shows overall conservation of domains involved in nucleotide binding, ATPase activity, co-chaperone binding as well as inter-subunit interactions. Important co-chaperones known to modulate Hsp90 function in other eukaryotes are conserved in malarial parasite as well. An acidic stretch of amino acids found in the linker region, which is uniquely extended in PfHsp90 could not be modeled in this structure suggesting a flexible conformation. Our results provide a basis to compare the overall structure and functional pathways dependent on PfHsp90 in malarial parasite. Further analysis of differences found between human and parasite Hsp90 may make it possible to design inhibitors targeted specifically against malaria.
Resumo:
The incorporation of dUMP during replication or the deamination of cytosine in DNA results in the occurrence of uracils in genomes. To maintain genomic integrity, uracil DNA glycosylases (UDGs) excise uracil from DNA and initiate the base-excision repair pathway. Here, we cloned, purified and biochemically characterized a family 5 UDG, UdgB, from Mycobacterium smegmatis to allow us to use it as a model organism to investigate the physiological significance of the novel enzyme. Studies with knockout strains showed that compared with the wild-type parent, the mutation rate of the udgB(-) strain was approximately twofold higher, whereas the mutation rate of a strain deficient in the family 1 UDG (ung(-)) was found to be similar to 8.4-fold higher. Interestingly, the mutation rate of the double-knockout (ung(-)ludgB(-)) strain was remarkably high, at similar to 19.6-fold. While CG to TA mutations predominated in the ung(-) and ung(-)/udgb(-) strains, AT to GC mutations were enhanced in the udgB(-) strain. The ung(-)/udgB(-) strain was notably more sensitive to acidified nitrite and hydrogen peroxide stresses compared with the single knockouts (ung(-) or udgB(-)). These observations reveal a synergistic effect of UdgB and Ung in DNA repair, and could have implications for the generation of attenuated strains of Mycobacterium tuberculosis.
Resumo:
In the present investigation, unidirectional grinding marks were attained on the steel plates. Then aluminium (Al) pins were slid at 0.2°, 0.6°, 1.0°, 1.4°, 1.8°, 2.2° and 2.6° tilt angles of the plate with the grinding marks perpendicular and parallel to the sliding direction under both dry and lubricated conditions using a pin-on-plate inclined sliding tester to understand the influence of tilt angle and grinding marks direction of the plate on coefficient of friction and transfer layer formation. It was observed that the transfer layer formation and the coefficient of friction depend primarily on the grinding marks direction of the harder mating surface. Stick-slip phenomenon was observed only under lubricated conditions. For the case of pins slid perpendicular to the unidirectional grinding marks stick-slip phenomenon was observed for tilt angles exceeding 0.6°, the amplitude of which increases with increasing tilt angles. However, for the case of the pins slid parallel to the unidirectional grinding marks the stick-slip phenomena was observed for angles exceeding 2.2°, the amplitude of which also increases with increasing tilt angle. The presence of stick-slip phenomena under lubricated conditions could be attributed to the molecular deformation of the lubricant component confined between asperities.