4 resultados para Verbal agreement
em Indian Institute of Science - Bangalore - Índia
Resumo:
A theoretical analysis of the three currently popular microscopic theories of solvation dynamics, namely, the dynamic mean spherical approximation (DMSA), the molecular hydrodynamic theory (MHT), and the memory function theory (MFT) is carried out. It is shown that in the underdamped limit of momentum relaxation, all three theories lead to nearly identical results when the translational motions of both the solute ion and the solvent molecules are neglected. In this limit, the theoretical prediction is in almost perfect agreement with the computer simulation results of solvation dynamics in the model Stockmayer liquid. However, the situation changes significantly in the presence of the translational motion of the solvent molecules. In this case, DMSA breaks down but the other two theories correctly predict the acceleration of solvation in agreement with the simulation results. We find that the translational motion of a light solute ion can play an important role in its own solvation. None of the existing theories describe this aspect. A generalization of the extended hydrodynamic theory is presented which, for the first time, includes the contribution of solute motion towards its own solvation dynamics. The extended theory gives excellent agreement with the simulations where solute motion is allowed. It is further shown that in the absence of translation, the memory function theory of Fried and Mukamel can be recovered from the hydrodynamic equations if the wave vector dependent dissipative kernel in the hydrodynamic description is replaced by its long wavelength value. We suggest a convenient memory kernel which is superior to the limiting forms used in earlier descriptions. We also present an alternate, quite general, statistical mechanical expression for the time dependent solvation energy of an ion. This expression has remarkable similarity with that for the translational dielectric friction on a moving ion.
Resumo:
Recently three different experimental studies on ultrafast solvation dynamics in monohydroxy straight-chain alcohols (C-1-C-4) have been carried out, with an aim to quantify the time constant (and the amplitude) of the ultrafast component. The results reported are, however, rather different from different experiments. In order to understand the reason for these differences, we have carried out a detailed theoretical study to investigate the time dependent progress of solvation of both an ionic and a dipolar solute probe in these alcohols. For methanol, the agreement between the theoretical predictions and the experimental results [Bingemann and Ernsting J. Chem. Phys. 1995, 102, 2691 and Horng et al. J: Phys, Chern, 1995, 99, 17311] is excellent. For ethanol, propanol, and butanol, we find no ultrafast component of the time constant of 70 fs or so. For these three liquids, the theoretical results are in almost complete agreement with the experimental results of Horng et al. For ethanol and propanol, the theoretical prediction for ionic solvation is not significantly different from that of dipolar solvation. Thus, the theory suggests that the experiments of Bingemann and Ernsting and those of Horng et al. studied essentially the polar solvation dynamics. The theoretical studies also suggest that the experimental investigations of Joo et al. which report a much faster and larger ultrafast component in the same series of solvents (J. Chem. Phys. 1996, 104, 6089) might have been more sensitive to the nonpolar part of solvation dynamics than the polar part. In addition, a discussion on the validity of the present theoretical approach is presented. In this theory the ultrafast component arises from almost frictionless inertial motion of the individual solvent molecules in the force field of its neighbors.
Resumo:
We propose a generic three-pass key agreement protocol that is based on a certain kind of trapdoor one-way function family. When specialized to the RSA setting, the generic protocol yields the so-called KAS2 scheme that has recently been standardized by NIST. On the other hand, when specialized to the discrete log setting, we obtain a new protocol which we call DH2. An interesting feature of DH2 is that parties can use different groups (e.g., different elliptic curves). The generic protocol also has a hybrid implementation, where one party has an RSA key pair and the other party has a discrete log key pair. The security of KAS2 and DH2 is analyzed in an appropriate modification of the extended Canetti-Krawczyk security model.
Resumo:
We consider information theoretic secret key (SK) agreement and secure function computation by multiple parties observing correlated data, with access to an interactive public communication channel. Our main result is an upper bound on the SK length, which is derived using a reduction of binary hypothesis testing to multiparty SK agreement. Building on this basic result, we derive new converses for multiparty SK agreement. Furthermore, we derive converse results for the oblivious transfer problem and the bit commitment problem by relating them to SK agreement. Finally, we derive a necessary condition for the feasibility of secure computation by trusted parties that seek to compute a function of their collective data, using an interactive public communication that by itself does not give away the value of the function. In many cases, we strengthen and improve upon previously known converse bounds. Our results are single-shot and use only the given joint distribution of the correlated observations. For the case when the correlated observations consist of independent and identically distributed (in time) sequences, we derive strong versions of previously known converses.