64 resultados para Ventricule cardiaque gauche

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ion transport mechanism in lithium perchlorate (LiClO4)-succinonitrile (SN), a prototype of plastic crystalline soft matter electrolyte is discussed in the context of solvent configurational isomerism and ion solvation. Contributions of both solvent configurational isomerism and ion solvation are reflected in the activation energy for ion conduction in 0-1 M LiClO4-SN samples. Activation energy due to solvent configurational changes, that is, trans-gauche isomerism is observed to be a function of salt content and decreases in presence of salt (except at high salt concentrations, e.g. 1 M LiClO4-SN). The remnant contribution to activation energy is attributed to ion-association. The X-ray diffraction of single crystals obtained using in situ cryo-crystallography confirms directly the observations of the ionic conductivity measurements. Fourier transform infrared spectroscopy and NMR line width measurements provide additional support to our proposition of ion transport in the prototype plastic crystalline electrolyte.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na+.C6HI209 P-, Mr=282.1, monoclinic, e2~, a=5-762(1), b=7.163(2), c=12.313(1)A, fl= 99.97 (1) °, U= 500.5 A 3, Z= 2, D m = 1.86, D x = 1.87 Mg m -s, Cu Ka, 2 = 1.5418 A, /a = 3-3 mm -1, F(000) = 292, T= 300 K, final R for 922 observed reflections is 0-042. The phosphate ester bond, P-O(6), is 1.575 (5)A, slightly shorter than the P~O bond in monopotassium phosphoenolpyruvate [1.612 (6) A] [Hosur & Viswamitra (1981). Acta Cryst. B37, 839-843]. The pyranose sugar ring takes a 4C 1 chair conformation. The conformation about the exocyclic C(5)-C(6) bond is gauche-trans. The endocyclic C-O bonds in the glucose ring are nearly equal with C(5)-O(5) = 1.435 (8) and C(1)-O(5) = 1.436 (9) A. The sodium ion has seven near neighbours within a distance of 2.9 A. The crystal structure is stabilized by hydrogen bonds between the O atoms of symmetryrelated molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

M r = 326.3, monoclinic, P21, a --= 6.510 (2), b=8.432 (2), c= 15.114 (2),a, /~= 101.42 (3) ° , Z = 2, V= 813.15 A 3, D x = 1-33 Mg m -3, F(000) = 172, 2(Cu Ka) = 1.5418/~,, g(Cu Ka) = 0.906 mm -~, final R = 6.4% for 1924 observed counter reflections. The conformation about the glycosidic bond is syn [torsion angle C(6)-N(1)-C(1')-O(4')=-103.9(3)°]. The sugar pucker is C(2')-exo,C(3')-endo (3Tz). The conformation about the C(4')-C(5') bond is gauche-trans. An uncommon intermolecular hydrogen bond involving the ribose-ring oxygen O(1') and the base-nitrogen N(3) stabilizes the crystal structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mr= 361.3, triclinic, P1, a = 6-239 (2), b=11.280(2), c=12-451(2)A, a=101.2 (1), B= 92.3 (1), 7=99.9(1)°, V=844.123 A3, Z=2, Dx= 1.42, D m = 1.42 (1) Mg m -3, n(Cu Ka) = 1.5418 ,A., g = 1-102 mm -1, F(000) = 376, T= 293 K. Final R = 0.064 for 2150 observed reflections. The niflumic acid anions consist essentially of three planar groupings, namely, two six-membered rings and a carboxylate group attached to one of them. The invariant common structural features observed in the crystal structures of fenamates, namely, the coplanarity of the carboxyl group and the six-membered ring bearing it, and the internal hydrogen bond between the carboxyl group and the imino N atom that bridges the two sixmembered rings, are retained in the complex. The amino N atom is gauche with respect to the terminal hydroxyl group in the ethanolamine cation. The complexation between the two molecules is achieved through ionic and hydrogen-bonded interactions involving the carboxylate group in niflumic acid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations are reported for an anchored bilayer formed by the intercalation of cetyl trimethyl ammonium (CTA) and CH3(CH2)15N+(CH3) ions in a layered solid, CdPS3. The intercalated CTA ions are organized with the cationic headgroups tethered to the inorganic sheet and the hydrocarbon tails arranged as bilayers. Simulations were performed at three temperatures, 65, 180, and 298 K, using an isothermal−isobaric ensemble that was subsequently switched once macroscopic parameters had converged to a canonical isothermal−isochoric ensemble. The simulations are able to reproduce the experimental features of this system, including the formation of the bilayer and layer-to-layer separation distance. An analysis of the conformation of the chains showed that at all three temperatures a fraction of the alkyl chains retained a planar all-trans conformation, and that gauche bonds occurred as part of a “kink” (gauche+−trans−gauche−) sequence and not as isolated gauche bonds. Trans−gauche isomerization rates for the alkyl chains in the anchored bilayer are slower than those in lipid bilayers at the same temperature and show a progressive increase as the torsion numbers approach the tail. A two-dimensional periodic Voronoi tessellation analysis was performed to obtain the single-molecular area of an alkyl chain in the bilayer. The single-molecular area relaxation times are an order of magnitude longer than the trans−gauche isomerization times. The results indicate that the trans−gauche isomerization is associated with the creation and annihilation of a kink defect sequence. The results of the present MD simulation explain the apparent conflicting estimates of the gauche disorder in this system as obtained from infrared and 13C nuclear magnetic resonance measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mr= 363.17, orthorhombic, P21212 ~, a= 5.251(4), b=14.962(5), c=19.112(5)A, U= 1501.41/k 3, Z=4, Dx=1.61Mgm -3, /t(CuKa)= 3.02 mm -1, 2(Cu Ka)= 1.5418/~, final R = 7.0% for 1091 reflections with Fo> 2e(Fo). The glycosidic torsion angle ZCN is 13"1 (12) °. The ribose has a C (3')-exo,C (4)-endo twist geometry. The dioxolane ring assumes an envelope conformation with 0(3') displaced by 0.453 (10)/k from the plane of the other four atoms. The conformation about the C(4')-C(5') bond is gauche-gauche. The structure is stabilized by two hydrogen bonds between screw-axis-related molecules. The crystal packing and the conformation of the molecule are very similar to those found in the structure of 2',3'-O-isopropylideneuridine which lacks the Br atom at the 5-position.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

M,=477.3, orthorhombic, P2~2~2~, a= 6.719.(4), b=29.614(15), c= 9.559 (3) ~, Z=4, U-- 1902.0 A 3, D x = 1.67 Mg m -3, 2(Cu Ka) = 1.5418A, /~=l.90mm -1, T=290K. Final R for 1809 observed reflections is 0.045. The structure shows an unusual gauche-trans conformation about the C(4')-C(5') bond, while the sugar pucker [C(3')-exo] and glycosidic torsion angle [)CCN = 70.2 (5) °, anti] are normal. The two Na + ions do not interact with the molecule directly, being completely surrounded by water molecules. The cytosine bases are stacked, with a separation distance of 3.36 (5) A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mr= 367.2, monoclinic, C2, a = 8.429 (1),b= 10.184(2), c= 16.570(2)A, /~= 99.18 (1) °, U= 1404.2 A 3, z = 4, D m = 1.73, D x = 1.74 Mg m -3,Cu K~, 2 = 1.5418 A, g = 2.99 mm -1, F(000) = 764,T= 300K, final R for 1524 observed reflections is0.069. The endocyclic C-O bonds in the glucose ring are nearly equal with C(5)-O(5)= 1.445 (10) and C(1)-O(5)= 1.424(10). The pyranose sugar ring adopts a 4C 1 chair conformation. The conformation about the exocyclic C(5)-C(6) bond is gauche-gauche, in contrast to gauche-trans observed in the structure of the dipotassium salt of glucose 1-phosphate. The phosphate ester bond, P-O(1), is 1.641 (6)A, slightly longer than the 'high-energy' P-,.O bond in the monopotassium salt of phosphoenolpyruvate [1.612 (6)A]. Two sodium ions are six coordinated while the third has only five neighbours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C12HI6N206 is orthorhombic, P2x2121, with a = 19.890 (5), b = 12.789 (2), c = 5.236 (1) A, Z = 4, U = 1331.9/~ 3, F(000) = 600. Mo Ka (/~ = 0.123 mm -1) intensities for 940 unique reflections up to sin 0/2 = 0.538/k -1 were collected on a CAD-4 diffractometer. Final R = 0.034. The glycosidic torsion angle 2~CN is 3"4 °, significantly smaller than that (56.5 °) in 2',3'- -methoxymethyleneuridine (MMU). The ribose moiety has a C(3')-exo-C(4')-endo twist conformation, in contrast to the C(2')-endo conformation in MMU. However, the maximum amplitudes of pucker for the ribose and dioxolane rings are very nearly the same for the two structures. The conformation about C(4')-C(5') is gauche-gauche (~0oo = -68-4, Ooc = 51.3°).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure of the cobalt( 11) complex with 2'-deoxyinosine 5'-monophosphate (5'- dlMP), [Co(5'-dlMP) (H,0),]-2H20, has been analysed by X-ray diffraction. The complex crystallizes in the space group P2,2,2, with a = 6.877(3), b = 10.904(2), c = 25.421 (6) A, and Z = 4. The structure was solved by the heavy-atom method and refined to an R value of 0.043 using 1 776 unique reflections. The cobalt ion binds only to the 6-oxopurine base of the nucleotide at the N(7) position, the octahedral co-ordination of the metal being completed by five water oxygens. The phosphate oxygens are involved in hydrogen bonding with the co-ordinated water molecules. The structure is closely similar to that of the corresponding ribonucleotide complex. The nucleotide has the energetically preferred conformation: an anti base, a C(3') -endo sugar pucker, and a gauche-gauche conformation about the C(4')-C( 5') bond. The significance of sugar puckering in the monomeric complexes of general formula [ M (5'-nucleotide) (H20),] is explained in terms of the structural requirements for metal-water-phosphate bridging interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RECENT crystallographic studies of the dinucleosides ApU (ref. 1) and GpC (ref. 2) have given experimental proof for the base pairing arrangement proposed by Watson and Crick for the DNA double helix3. Another striking feature of this structure relates to the torsional angle about the C5'-C4' bond in the phosphate−sugar backbone chain. In the Crick and Watson model4, this conformation is gauche−trans (GT). Crystal structures of 5'-nucleotides, dinucleosides and dinucleotides so far studied, however, have shown only the gauchegauche (GG) conformation about this bond. The GG conformer is also the only one found in the refined models of the proposed structure of the double helical nucleic acids and polynucleotides5−7. The only nucleotide with a GT conformation is 6-azauridine-5'-phosphate8 which is not a normal monomer unit of nucleic acids. It is also reported that 5'-dGMP assumes preferentially GT conformation in solution9.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C6H11o9P2-.Ba2+.7H2o, M, = 521.5, is monoclinic, space group P21, a = 11.881 (4), b = 8.616 (5), c = 8.350 (4) A,B = 102.95 (3)0, Z = 2, U = 833.0 A 3, d m = 2.09, d c = 2.08 Mg m -3, F(000) = 516. Mo Ka (u = 0.034 mm -1) intensity data. R is 0.068 for 1603 reflections. Of the two endocyclic C-O bonds in the glucose ring, C(5)-O(5) [1.463 (23)] is longer than C(1)-O(5) [1.395 (23)A]. The pyranose sugar ring takes a 4C1 chair conformation. The Cremer-Pople puckering parameters are, 0 = 6.69 o, Q = 0.619 A and 0 = 263.7o. The conformation about the exocyclic C(5)-C(6) bond is gauche-gauche, in contrast to gauche-trans observed in the structure of glucose 1-phosphate. The phosphate ester bond, P-O(6), is 1.61 (1)A. It is similar in length to the 'high-energy' P~O bond in phosphoenolpyruvate. The Ba 2÷ ion is surrounded by nine O atoms within a distance of 2.95 A, of which seven are from water molecules. There is an intramolecular hydrogen bond between the sugar hydroxyl 0(4) and phosphate oxygen O(12).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RECENT crystallographic studies of the dinucleosides ApU (ref. 1) and GpC (ref. 2) have given experimental proof for the base pairing arrangement proposed by Watson and Crick for the DNA double helix3. Another striking feature of this structure relates to the torsional angle about the C5'-C4' bond in the phosphate−sugar backbone chain. In the Crick and Watson model4, this conformation is gauche−trans (GT). Crystal structures of 5'-nucleotides, dinucleosides and dinucleotides so far studied, however, have shown only the gauchegauche (GG) conformation about this bond. The GG conformer is also the only one found in the refined models of the proposed structure of the double helical nucleic acids and polynucleotides5−7. The only nucleotide with a GT conformation is 6-azauridine-5'-phosphate8 which is not a normal monomer unit of nucleic acids. It is also reported that 5'-dGMP assumes preferentially GT conformation in solution9.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CI1H19N4OIIP2.Na+.TH2 O, Mr = 594.08, is orthorhombic, space group P21212 l, with a = 6.946 (2), b = 12.503 (4), c = 28.264 (8)/k, U = 2454.6 A, a, D x = 1.61 Mg m -a, Z = 4, ~t(CuKa) = 2.612 mm -1, F(000) = 1244. Final R = 0.101 for 1454 observed reflections. The cytosine base is in the anti conformation with respect to the sugar (ZCN = 62"60) . The ribose exhibits an uncommon C(l')exo-C(2')endo puckering. The pyrophosphate has a characteristic staggered geometry. The conformation about P(2)-O(7') is trans (-103.4°). This makes CDPethanolamine more extended compared to the folded geometry of CDP-choline, which has a gauche conformation (71.3 o). The molecular interactions in the extended crystal structure, however, are similar to those found in CDP-choline, with the CMP-5' portions tightly bound by metal ligation and the phosphorylethanolamine parts only loosely held by water molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gabapentin (1-aminomethylcyclohexaneacetic acid, Gpn) is an achiral, conformationally constrained gamma amino acid residue. A survey of available crystal structures of Gpn peptides reveals that the torsion angles about the C-gamma-C-beta (theta(1)) and C-beta-C-alpha(theta(2)) bonds are overwhelmingly limited to gauche, gauche (g(+)g(+)/g(-)g(-)) conformations. The Gpn residue forms C-7 and C-9 hydrogen bonds in which the donor and acceptor atoms come from the flanking peptide units. In combination with alpha amino acid residues alpha gamma and gamma alpha segments can adopt C-12 hydrogen bonded structures. The conformational choices available to the Gpn residue have been probed using energy calculations, adopting a grid search strategy. Ramachandran phi-psi maps have been constructed for fixed values of theta(1) and theta(2), corresponding to the gauche and trans conformations. The sterically allowed and energetically favorable regions of conformational space have been defined and experimental observations compared. C-7 and C-9 hydrogen bonded conformational families have been identified using a grid search approach in which theta(1) and theta(2) values are varied over a range of +/- 10 degrees about ideal values at 1 degrees intervals. The theoretical analysis together with experimental observations for 59 Gpn residues from 35 crystal structures permits definition of the limited range of conformational possibilities at this gamma amino acid residue. .