146 resultados para Varying environment
em Indian Institute of Science - Bangalore - Índia
Resumo:
By “phenotypic plasticity” we refer to the capacity of a genotype to exhibit different phenotypes, whether in the same or in different environments. We have previously demonstrated that phenotypic plasticity can improve the degree of adaptation achieved via natural selection (Behera & Nanjundiah, 1995). That result was obtained from a genetic algorithm model of haploid genotypes (idealized as one-dimensional strings of genes) evolving in a fixed environment. Here, the dynamics of evolution is examined under conditions of a cyclically varying environment. We find that the rate of evolution, as well as the extent of adaptation (as measured by mean population fitness) is lowered because of environmental cycling. The decrease is adaptation caused by a varying environment can, however, be partly or wholly compensated by an increase in the degree of plasticity that a genotype is capable of. Also, the reduction of population fitness caused by a variable environment can be partially offset by decreasing the total number of genetic loci. We conjecture that an increase in genome size may have been among the factors responsible for the evolution of phenotypic plasticity.
Resumo:
Owing to the increased customer demands for make-to-order products and smaller product life-cycles, today assembly lines are designed to ensure a quick switch-over from one product model to another for companies' survival in market place. The complexity associated with the decisions pertaining to the type of training and number of workers and their exposition to the different tasks especially in the current era of customized production is a serious problem that the managers and the HRD gurus are facing in industry. This paper aims to determine the amount of cross-training and dynamic deployment policy caused by workforce flexibility for a make-to-order assembly. The aforementioned issues have been dealt with by adopting the concept of evolutionary fuzzy system because of the linguistic nature of the attributes associated with product variety and task complexity. A fuzzy system-based methodology is proposed to determine the amount of cross-training and dynamic deployment policy. The proposed methodology is tested on 10 sample products of varying complexities and the results obtained are in line with the conclusions drawn by previous researchers.
Resumo:
-helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These -helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C-termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze -helices in a high-resolution dataset of integral -helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C-termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near-helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins. Proteins 2014; 82:3420-3436. (c) 2014 Wiley Periodicals, Inc.
Resumo:
The seasonality and mutual dependence of aerosol optical properties and cloud condensation nuclei (CCN) activity under varying meteorological conditions at the high-altitude Nainital site (2km) in the Indo-Gangetic Plains were examined using nearly year-round measurements (June 2011 to March 2012) at the Atmospheric Radiation Measurement mobile facility as part of the Regional Aerosol Warming Experiment-Ganges Valley Aerosol Experiment of the Indian Space Research Organization and the U.S. Department of Energy. The results from collocated measurements provided enhanced aerosol scattering and absorption coefficients, CCN concentrations, and total condensation nuclei concentrations during the dry autumn and winter months. The CCN concentration (at a supersaturation of 0.46) was higher during the periods of high aerosol absorption (single scattering albedo (SSA)<0.80) than during the periods of high aerosol scattering (SSA>0.85), indicating that the aerosol composition seasonally changes and influences the CCN activity. The monthly mean CCN activation ratio (at a supersaturation of 0.46) was highest (>0.7) in late autumn (November); this finding is attributed to the contribution of biomass-burning aerosols to CCN formation at high supersaturation conditions.
Resumo:
The unsteady incompressible viscous fluid flow between two parallel infinite disks which are located at a distance h(t*) at time t* has been studied. The upper disk moves towards the lower disk with velocity h'(t*). The lower disk is porous and rotates with angular velocity Omega(t*). A magnetic field B(t*) is applied perpendicular to the two disks. It has been found that the governing Navier-Stokes equations reduce to a set of ordinary differential equations if h(t*), a(t*) and B(t*) vary with time t* in a particular manner, i.e. h(t*) = H(1 - alpha t*)(1/2), Omega(t*) = Omega(0)(1 - alpha t*)(-1), B(t*) = B-0(1 - alpha t*)(-1/2). These ordinary differential equations have been solved numerically using a shooting method. For small Reynolds numbers, analytical solutions have been obtained using a regular perturbation technique. The effects of squeeze Reynolds numbers, Hartmann number and rotation of the disk on the flow pattern, normal force or load and torque have been studied in detail
Resumo:
We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.
Resumo:
To circumvent the practical difficulties in research on tropical rainforest lianas in their natural habitat due to prevailing weather conditions, dense camouflaging vegetation and problems in transporting equipment for experimental investigations, Entada pursaetha DC (syn. Entada scandens Benth., Leguminosae) was grown inside a research campus in a dry subtropical environment. A solitary genet has attained a gigantic size in 17 years, infesting crowns of semi-evergreen trees growing in an area roughly equivalent to 1.6 ha. It has used aerially formed, cable-like stolons for navigating and spreading its canopy across tree gaps. Some of its parts which had remained unseen in its natural habitat due to dense vegetation are described. The attained size of this liana in a climatically different environment raises the question as to why it is restricted to evergreen rainforests. Some research problems for which this liana will be useful are pointed out.
Resumo:
A detailed study of the solvation dynamics of a charged coumarin dye molecule in gamma-cyclodextrin/water has been carried out by using two different theoretical approaches. The first approach is based on a multishell continuum model (MSCM). This model predicts the time scales of the dynamics rather well, provided an accurate description of the frequency-dependent dielectric function is supplied. The reason for this rather surprising agreement is 2-fold. First, there is a cancellation of errors, second, the two-zone model mimics the heterogeneous microenvironment surrounding the ion rather well. The second approach is based on the molecular hydrodynamics theory (MI-IT). In this molecular approach, the solvation dynamics has been studied by restricting the translational motion of the solvent molecules enclosed within the cavity. The results from the molecular theory are also in good agreement with the experimental results. Our study indicates that, in the present case, the restricted environment affects only the long time decay of the solvation time correlation function. The short time dynamics is still governed by the librational (and/or vibrational) modes present in bulk water.
Resumo:
Results of a study of the variation of natural frequencies with respect to the length of the stiffener of a square panel clamped all along its boundary and stiffened in the middle by a concentric stiffener were recently reported [ 11. Significant increases in certain frequencies, namely those with modes symmetric about both the medians of the plate, were observed when small gaps were not left between the plate boundary and the stiffener end. As an extension to that work, results of a study of the effect of the eccentricity of the stiffener on the frequency variation with the length of the stiffener are reported here.
Resumo:
The laminar flow of a fairly concentrated suspension (in which the volume fraction Z of the solid particles < 0.4) in a spatially varying periodically curved pipe has been examined numerically. Unlike the case of interacting suspension flows, the particles are found to flow in a well-mixed fashion, altering both the axial and circumferential velocities and consequently the fluid flux in the tube, depending on their diffusivity and inertia. The magnitude of shear stress at the wall is enhanced, suggesting that, if applied to vascular system, the vascular wall could be prone to ulceration during pathological situations like polycythemia. The delay in adaptation of the deviation in Poiseuille flow velocity to the curvature changes is also discussed in detail.
Resumo:
The Gaussian probability closure technique is applied to study the random response of multidegree of freedom stochastically time varying systems under non-Gaussian excitations. Under the assumption that the response, the coefficient and the excitation processes are jointly Gaussian, deterministic equations are derived for the first two response moments. It is further shown that this technique leads to the best Gaussian estimate in a minimum mean square error sense. An example problem is solved which demonstrates the capability of this technique for handling non-linearity, stochastic system parameters and amplitude limited responses in a unified manner. Numerical results obtained through the Gaussian closure technique compare well with the exact solutions.
Resumo:
Alpha-Tocopherol is found to interact with the stable free radical DPPH orders of magnitude faster than ordinary phenols. It is suggested that the high reactivity arises from the coplanarity of the C-O-C framework with the aromatic ring. The rate constant of the reaction of Alpha-tocopherol with DPPH increases progressively with solvent polarity and can be quantitatively related to Kosower's Z parameter. Fatty acid derivatives slow down the reaction with DPPH due to binding with Alpha-tocopherol.
Resumo:
The pulsatile flow of an incompressible viscous fluid in a cylindrical tube of varying cross section is investigated for small Reynolds numbers. The solutions consist of a stedy and an oscillatory part. The shear stress distribution on the wall is evaluated and discussed in detail for special geometries like tapered tubes, locally constricted tubes and peristaltic tubes. The existence of separation in the flow field is noticed.