73 resultados para Unmanned Aerial Vehicle (UAV)

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autonomous mission control, unlike automatic mission control which is generally pre-programmed to execute an intended mission, is guided by the philosophy of carrying out a complete mission on its own through online sensing, information processing, and control reconfiguration. A crucial cornerstone of this philosophy is the capability of intelligence and of information sharing between unmanned aerial vehicles (UAVs) or with a central controller through secured communication links. Though several mission control algorithms, for single and multiple UAVs, have been discussed in the literature, they lack a clear definition of the various autonomous mission control levels. In the conventional system, the ground pilot issues the flight and mission control command to a UAV through a command data link and the UAV transmits intelligence information, back to the ground pilot through a communication link. Thus, the success of the mission depends entirely on the information flow through a secured communication link between ground pilot and the UAV In the past, mission success depended on the continuous interaction of ground pilot with a single UAV, while present day applications are attempting to define mission success through efficient interaction of ground pilot with multiple UAVs. However, the current trend in UAV applications is expected to lead to a futuristic scenario where mission success would depend only on interaction among UAV groups with no interaction with any ground entity. However, to reach this capability level, it is necessary to first understand the various levels of autonomy and the crucial role that information and communication plays in making these autonomy levels possible. This article presents a detailed framework of UAV autonomous mission control levels in the context of information flow and communication between UAVs and UAV groups for each level of autonomy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of multiple unmanned aerial vehicle (UAV) rendezvous when the UAVs have to perform maneuvers to avoid collisions with other UAVs. The proposed solution consists of using velocity control and a wandering maneuver, if needed, of the UAVs based on a consensus among them on the estimated time of arrival at the point of the rendezvous. This algorithm, with a slight modification is shown to be useful in tracking stationary or slowly moving targets with a standoff distance. The proposed algorithm is simple and computationally efficient. The simulation results demonstrate the efficacy of the proposed approach. DOI: 10.1061/(ASCE)AS.1943-5525.0000145. (C) 2012 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While performing a mission, multiple Unmanned Aerial Vehicles (UAVs) need to avoid each other to prevent collisions among them. In this paper, we design a collision avoidance algorithm to resolve the conflict among UAVs that are on a collision course while flying to heir respective destinations. The collision avoidance algorithm consist of each UAV that is on a collision course reactively executing a maneuver that will, as in `inverse' Proportional Navigation (PN), increase Line of Sight (LOS) rate between them, resulting in a `pulling out' of collision course. The algorithm is tested for high density traffic scenarios as well as for robustness in the presence of noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much of the benefits of deploying unmanned aerial vehicles can be derived from autonomous missions. For such missions, however, sense-and-avoid capability (i.e., the ability to detect potential collisions and avoid them) is a critical requirement. Collision avoidance can be broadly classified into global and local path-planning algorithms, both of which need to be addressed in a successful mission. Whereas global path planning (which is mainly done offline) broadly lays out a path that reaches the goal point, local collision-avoidance algorithms, which are usually fast, reactive, and carried out online, ensure safety of the vehicle from unexpected and unforeseen obstacles/collisions. Even though many techniques for both global and local collision avoidance have been proposed in the recent literature, there is a great interest around the globe to solve this important problem comprehensively and efficiently and such techniques are still evolving. This paper presents a brief overview of a few promising and evolving ideas on collision avoidance for unmanned aerial vehicles, with a preferential bias toward local collision avoidance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this brief, decentralized sliding mode controllers that enable a connected and leaderless swarm of unmanned aerial vehicles (UAVs) to reach a consensus in altitude and heading angle are presented. In addition, sliding mode control-based autopilot designs to control those states for which consensus is not required are also presented. By equipping each UAV with this combination of controllers, it can autonomously decide on being a member of the swarm or fly independently. The controllers are designed using a coupled nonlinear dynamic model, derived for the YF-22 aircraft, where the aerodynamic forces and moments are linear functions of the states and inputs.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, several basic swarming laws for Unmanned Aerial Vehicles (UAVs) are developed for both two-dimensional (2D) plane and three-dimensional (3D) space. Effects of these basic laws on the group behaviour of swarms of UAVs are studied. It is shown that when cohesion rule is applied an equilibrium condition is reached in which all the UAVs settle at the same altitude on a circle of constant radius. It is also proved analytically that this equilibrium condition is stable for all values of velocity and acceleration. A decentralised autonomous decision-making approach that achieves collision avoidance without any central authority is also proposed in this article. Algorithms are developed with the help of these swarming laws for two types of collision avoidance, Group-wise and Individual, in 2D plane and 3D space. Effect of various parameters are studied on both types of collision avoidance schemes through extensive simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a nonlinear control has been designed using the dynamic inversion approach for automatic landing of unmanned aerial vehicles (UAVs), along with associated path planning. This is a difficult problem because of light weight of UAVs and strong coupling between longitudinal and lateral modes. The landing maneuver of the UAV is divided into approach, glideslope and flare. In the approach UAV aligns with the centerline of the runway by heading angle correction. In glideslope and flare the UAV follows straight line and exponential curves respectively in the pitch plane with no lateral deviations. The glideslope and flare path are scheduled as a function of approach distance from runway. The trajectory parameters are calculated such that the sink rate at touchdown remains within specified bounds. It is also ensured that the transition from the glideslope to flare path is smooth by ensuring C-1 continuity at the transition. In the outer loop, the roll rate command is generated by assuring a coordinated turn in the alignment segment and by assuring zero bank angle in the glideslope and flare segments. The pitch rate command is generated from the error in altitude to control the deviations from the landing trajectory. The yaw rate command is generated from the required heading correction. In the inner loop, the aileron, elevator and rudder deflections are computed together to track the required body rate commands. Moreover, it is also ensured that the forward velocity of the UAV at the touch down remains close to a desired value by manipulating the thrust of the vehicle. A nonlinear six-DOF model, which has been developed from extensive wind-tunnel testing, is used both for control design as well as to validate it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unmanned aerial vehicles (UAVs) have the potential to carry resources in support of search and prosecute operations. Often to completely prosecute a target, UAVs may have to simultaneously attack the target with various resources with different capacities. However, the UAVs are capable of carrying only limited resources in small quantities, hence, a group of UAVs (coalition) needs to be assigned that satisfies the target resource requirement. The assigned coalition must be such that it minimizes the target prosecution delay and the size of the coalition. The problem of forming coalitions is computationally intensive due to the combinatorial nature of the problem, but for real-time applications computationally cheap solutions are required. In this paper, we propose decentralized sub-optimal (polynomial time) and decentralized optimal coalition formation algorithms that generate coalitions for a single target with low computational complexity. We compare the performance of the proposed algorithms to that of a global optimal solution for which we need to solve a centralized combinatorial optimization problem. This problem is computationally intensive because the solution has to (a) provide a coalition for each target, (b) design a sequence in which targets need to be prosecuted, and (c) take into account reduction of UAV resources with usage. To solve this problem we use the Particle Swarm Optimization (PSO) technique. Through simulations, we study the performance of the proposed algorithms in terms of mission performance, complexity of the algorithms and the time taken to form the coalition. The simulation results show that the solution provided by the proposed algorithms is close to the global optimal solution and requires far less computational resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grouping and coordination tactics for ground attack missions by a heterogeneous mix of reconnaissance, enemy suppression, and attack unmanned aerial vehicles (UAVs) is presented. Dubins' paths are used to determine the optimal number of attack UAVs and their positional and heading freedoms, as functions of weapon seeker range and field of view. A generic battlefield scenario with layered defense is created and the tactics are evaluated on a Group Flyer simulation platform for both nominal and off-nominal conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a robust fixed order H-2 controller design using Strengthened discrete optimal projection equations, which approximate the first order necessary optimality condition. The novelty of this work is the application of the robust H-2 controller to a micro aerial vehicle named Sarika2 developed in house. The controller is designed in discrete domain for the lateral dynamics of Sarika2 in the presence of low frequency atmospheric turbulence (gust) and high frequency sensor noise. The design specification includes simultaneous stabilization, disturbance rejection and noise attenuation over the entire flight envelope of the vehicle. The resulting controller performance is comprehensively analyzed by means of simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A team of unmanned aerial vehicles (UAVs) with limited communication ranges and limited resources are deployed in a region to search and destroy stationary and moving targets. When a UAV detects a target, depending on the target resource requirement, it is tasked to form a coalition over the dynamic network formed by the UAVs. In this paper, we develop a mechanism to find potential coalition members over the network using principles from internet protocol and introduce an algorithm using Particle Swarm Optimization to generate a coalition that destroys the target is minimum time. Monte-Carlo simulations are carried out to study how coalition are formed and the effects of coalition process delays.