10 resultados para Undercooling

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical analysis is carried out to observe the influence of important flow parameters such as Nusselt number and Sherwood number on the tip speed of an equiaxed dendrite growing in a convecting alloy melt. The effect of thermal and solutal transfer at the interface due to convection is equated to an undercooling of the melt, and an expression is derived for this equivalent undercooling in terms of the flow Nusselt number and Sherwood number. Results for the equivalent undercooling are compared with corresponding numerical values obtained by performing simulations based on the enthalpy method. This method represents a relatively simple procedure to analyze the effects of melt convection on the growth rate of dendrites. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a theoretical model for studying the effects of shrinkage induced flow on the growth rate of binary alloy dendrites. An equivalent undercooling of the melt is defined in terms of ratio of the phase densities to represent the change in dendrite growth rate due to variation in solutal and thermal transport resulting from shrinkage induced flow. Subsequently, results for dendrite growth rate predicted by the equivalent undercooling model is compared with the corresponding predictions obtained using an enthalpy based numerical method for dendrite growth with shrinkage. The agreement is found to be good. Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The morphology and crystal growth of poly(l-lactic acid), PLLA have been studied from the melt as a function of undercooling and molecular weight using hot stage microscopy. Attention has been given to the application of growth rate equation on the growth rate data of PLLA and thus various nucleation parameters have been calculated. The criteria of Regime I and Regime II types of crystallization has been applied for the evaluation of substrate lengths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The existence of a metastable miscibility gap has been indicated from the metastable phase diagram of the Zn-Sn system calculated using regular solution and Krupkowski's models. To validate this phenomenon experimentally, the entrained droplet technique was used to achieve high undercooling and to access the metastable regions. The microstructural analysis confirms the miscibility gap and the associated monotectic reaction. Evidence is also presented for a possible massive solidification of the undercooled melt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A hypomonotectic alloy of Al-4.5wt%Cd has been manufactured by melt spinning and the resulting microstructure examined by transmission electron microscopy. As-melt spun hypomonotectic Al-4.5wt%Cd consists of a homogeneous distribution of faceted 5 to 120 nm diameter cadmium particles embedded in a matrix of aluminium, formed during the monotectic solidification reaction. The cadmium particles exhibit an orientation relationship with the aluminium matrix of {111}Al//{0001}Cd and lang110rangAlAl//lang11¯20> Cd, with four cadmium particle variants depending upon which of the four {111}Al planes is parallel to {0001}Cd. The cadmium particles exibit a distorted cuboctahedral shape, bounded by six curved {100}Al//{20¯23}Cd facets, six curved {111}Al/{40¯43}Cd facets and two flat {111}Al//{0001}Cd facets. The as-melt spun cadmium particle shape is metastable and the cadmium particles equilibrate during heat treatment below the cadmium melting point, becoming elongated to increase the surface area and decrease the separation of the {111}Al//{0001}Cd facets. The equilibrium cadmium particle shape and, therefore, the anisotropy of solid aluminium-solid cadmium and solid aluminium -liquid cadmium surface energies have been monitored by in situ heating in the transmission electron microscope over the temperature range between room temperature and 420 °C. The anisotropy of solid aluminium-solid cadmium surface energy is constant between room temperature and the cadmium melting point, with the {100}Al//{20¯23}Cd surface energy on average 40% greater than the {111}Al//{0001}Cd surface energy, and 10% greater than the {111}Al//{40¯43Cd surface energy. When the cadmium particles melt at temperatures above 321 °C, the {100}Al//{20¯23}Cd facets disappear and the {111}Al//{40¯43}Cd and {111}A1//{0001}Cd surface energies become equal. The {111}Al facets do not disappear when the cadmium particles melt, and the anisotropy of solid aluminium-liquid cadmium surface energy decreases gradually with increasing temperature above the cadmium melting point. The kinetics of cadmium solidification have been examined by heating and cooling experiments in a differential scanning calorimeter over a range of heating and cooling rates. Cadmium particle solidification is nucleated catalytically by the surrounding aluminium matrix on the {111}Al faceted surfaces, with an undercooling of 56 K and a contact angle of 42 °. The nucleation kinetics of cadmium particle solidification are in good agreement with the hemispherical cap model of heterogeneous nucleation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zinc-10 and 20 wt pct Pb alloys have been rapidly solidified by melt spinning to obtain a very fine scale dispersion of nanometer-sized Pb particles embedded in Zn matrix. The microstructure and crystallography of the Pb particles have been studied using transmission electron microscopy (TEM). Each embedded Pb particle is a single crystal, with a truncated hexagonal biprism shape with the 6/mmm Zn matrix point group symmetry surrounded by and { 0001 á },\text { \text10[`\text1] \text0 },\text and { \text10[`\text1] \text1 }0001 1010 and 1011 facets. The Pb particles solidify with a well-defined orientation relationship with the Zn matrix of ( 0001 )Zn ||(111)Pb\text and\text [ \text11[`\text2] \text0 ]Zn| ||[ 1[`1] 0 ]Pb 0001Zn(111)Pb and 1120Zn110Pb . The melting and solidification behavior of the Pb particle have been studied using differential scanning calorimetry (DSC). The Pb particles solidify with an undercooling of approximately 30 K, by heterogeneous nucleation on the {0001} facets of the surrounding Zn matrix, with an apparent contact angle of 23 deg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A transient macroscopic model is developed for studying heat and mass transfer in a single-pass laser surface alloying process, with particular emphasis on non-equilibrium solidification considerations. The solution for species concentration distribution requires suitable treatment of non-equilibrium mass transfer conditions. In this context, microscopic features pertaining to non-equilibrium effects on account of solutal undercooling are incorporated through the formulation of a modified partition-coefficient. The effective partition-coefficient is numerically modeled by Means of a number of macroscopically observable parameters related to the solidifying domain. The numerical model is so developed that the modifications on account of non-equilibrium solidification considerations can be conveniently implemented in existing numerical codes based on equilibrium solidification considerations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypoeutectic boron addition (0.1 wt.%) to Ti-6Al-4V is known to cause significant refinement of the cast microstructure. In the present investigation, it has been observed that trace boron addition to Ti-6Al-4V alloy also ensures excellent microstructural homogeneity throughout the ingot. A subdued thermal gradient, related to the basic grain refinement mechanism by constitutional undercooling, persists during solidification for the boron-containing alloy and maintains equivalent beta grain growth kinetics at different locations in the ingot. The Ti-6Al-4V alloy shows relatively strong texture with preferred components (e.g. ingot axis parallel to[0 0 0 1] or [1 0 (1) over bar 0]) over the entire ingot and gradual transition of texture components along the radius. For Ti-6Al-4V-0.1B alloy, significant weakening characterizes both the high-temperature beta and room-temperature a texture. In addition to solidification factors that are responsible for weak beta texture development, microstructural differences due to boron addition, e.g. the absence of grain boundary alpha phase and presence of TiB particles, strongly affects the mechanism of beta -> alpha phase transformation and consequently weakens the alpha phase texture. Based on the understanding developed for the boron-modified alloy, a novel mechanism has been proposed for the microstructure and texture formation during solidification and phase transformation. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose-In the present work, a numerical method, based on the well established enthalpy technique, is developed to simulate the growth of binary alloy equiaxed dendrites in presence of melt convection. The paper aims to discuss these issues. Design/methodology/approach-The principle of volume-averaging is used to formulate the governing equations (mass, momentum, energy and species conservation) which are solved using a coupled explicit-implicit method. The velocity and pressure fields are obtained using a fully implicit finite volume approach whereas the energy and species conservation equations are solved explicitly to obtain the enthalpy and solute concentration fields. As a model problem, simulation of the growth of a single crystal in a two-dimensional cavity filled with an undercooled melt is performed. Findings-Comparison of the simulation results with available solutions obtained using level set method and the phase field method shows good agreement. The effects of melt flow on dendrite growth rate and solute distribution along the solid-liquid interface are studied. A faster growth rate of the upstream dendrite arm in case of binary alloys is observed, which can be attributed to the enhanced heat transfer due to convection as well as lower solute pile-up at the solid-liquid interface. Subsequently, the influence of thermal and solutal Peclet number and undercooling on the dendrite tip velocity is investigated. Originality/value-As the present enthalpy based microscopic solidification model with melt convection is based on a framework similar to popularly used enthalpy models at the macroscopic scale, it lays the foundation to develop effective multiscale solidification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the impact of the nucleation law for nucleation on Al-Ti-B inoculant particles, of the motion of inoculant particles and of the motion of grains on the predicted macrosegregation and microstructure in a grain-refined Al-22 wt.% Cu alloy casting. We conduct the study by numerical simulations of a casting experiment in a side-cooled 76×76×254 mm sand mould. Macrosegregation and microstructure formation are studied with a volume-averaged two-phase model accounting for macroscopic heat and solute transport, melt convection, and transport of inoculant particles and equiaxed grains. On the microscopic scale it accounts for nucleation on inoculant particles with a given size distribution (and corresponding activation undercooling distribution)and for the growth of globular solid grains. The growth kinetics is described by accounting for limited solute diffusion in both liquid and solid phases and for convective effects. We show that the consideration of a size distribution of the inoculants has a strong impact on the microstructure(final grain size) prediction. The transport of inoculants significantly increases the microstructure heterogeneities and the grain motion refines the microstructure and reduces the microstructure heterogeneities.