194 resultados para UP-CONVERSION LUMINESCENCE

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work deals with the structural and efficient down-shifting (DS) and up-conversion (UC) luminescence properties of erbium ion (Er3+) doped nanocrystalline barium sodium niobate (Ba2Na1-3xErxNb5O15, where x = 0, 0.02, 0.04 and 0.06) powders synthesized via novel citrate-based sol-gel route. The monophasic nature of the title compound was confirmed via x-ray powder diffraction followed by FT-IR studies. High-resolution transmission electron microscopy (HRTEM) facilitated the establishment of the nanocrystalline phase and the morphology of the crystallites. The Kubelka-Munk function, based on diffused reflectance studies and carried out on nano-sized crystallites, was employed to obtain the optical band-gap. The synthesized nanophosphor showed efficient DS/PL-photoluminescence and UC luminescence properties, which have not yet been reported so far in this material. The material emits intense DS green emission on excitation with 378 nm radiation. Interestingly, the material gives intense UC emission in the visible region dominated by green emission and relatively weak red emission on 976 nm excitation (NIR laser excitation). Such a dual-mode emitting nanophosphor could be very useful in display devices and for many other applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A hydrothermal reaction of the acetate salts of the rare-earths, 5-aminoisophthalic acid (H(2)AIP), and NaOH at 150 degrees C for 3 days gave rise to a new family of three-dimensional rare-earth aminoisophthalates, M(mu(2)-OH)(C8H5NO4)] M = Y3+ (I), La3+ (II), Pr3+ (III), Nd3+ (IV), Sm3+ (V), Eu3+ (VI), Gd3+ (VII), Dy3+ (VIII), and Er3+ (IX)]. The structures contain M-O(H)-M chains connected by AIP anions. The AIP ions are connected to five metal centers and each metal center is connected with five AIP anions giving rise to a unique (5,5) net. To the best of our knowledge, this is the first observation of a (5,5) net in metal-organic frameworks that involve rare-earth elements. The doping of Eu3+/(3+) ions in place of Y3+/ La3+ in the parent structures gave rise to characteristic metal-centered emission (red = Eu3+, green = Tb3+). Life-time studies indicated that the excited emission states in the case of Eu3+ (4 mol-% doped) are in the range 0.287-0.490 ms and for Tb3+ (4 mol-% doped) are in the range of 1.265-1.702 ms. The Nd3+-containing compound exhibits up-conversion behavior based on two-photon absorption when excited using lambda = 580 nm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new series of inorganic-organic hybrid framework compounds, Ln(2)(mu(3)-OH)(C4H4O5)(2)(C4H2O4)]center dot 2H(2)O, (Ln = Ce, Pr and Nd), have been prepared employing a hydrothermal method. Malic acid and fumaric acid form part of the structure. The malate units connect the lanthanide centers forming Ln-O-Ln two-dimensional layers, which are cross-linked by the fumarate units forming the three-dimensional structure. Extra framework water molecules form a dimer and occupy the channels. The water molecules can be reversibly adsorbed. The dehydrated structure did not show any differences in framework structure/ connectivity. The presence of lattice water provides a pathway for proton conductivity. Optical studies suggest an up-conversion behavior involving more than one photon for a neodymium compound.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wet chemical reaction of hydrated alumina gels, Al2O3.yH(2)O(80

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strategies for efficient start-up of a continuous process for biooxidation of refractory gold ore and concentrate obtained from Hutti, Gold Mines Limited (HGML), India are discussed in this work. The biooxidation of the concentrate at high pulp density (10%) with wild strain of Thiobacillus ferrooxidans isolated from HGML mines is characterized by significant lag phase (20 days) and incomplete oxidation (35%) even after prolonged operation (60 days). Two strategies, biooxidation with concentrate adapted cells and a step leaching strategy, in which the pulp density is progressively increased from 2% to 10% were considered and the latter resulted in efficient biooxidation of concentrate. Conversion of such a process from batch to continuous operation is shown to result in complete biooxidation of the concentrate and gold extraction efficiency in excess of 90%. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental investigations into the effect of temperature on conversion of NO in the presence of hydrocarbons (ethylene, acetylene and n-hexane) are presented. An AC energized dielectric barrier discharge reactor was used as the plasma reactor. The experiments were carried out at different temperatures up to 200 degreesC. The discharge powers were measured at all the temperatures. The discharge power was found to increase with temperature. NO conversion in the presence of ethylene and n-hexane was better than that of acetylene at all temperatures. The addition of acetylene at room temperature showed no better conversion of NO compared to no additive case. While at higher temperatures, it could enhance the conversion of NO. A slight enhancement in NO and NOx removal was observed in the presence of water vapor. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the objective of investigating the direct conversion of inorganic carbonates such as CaCO3 to hydrocarbons, assisted by transition metal ions, we have carried out studies on CaCO3 in an intimate admixture with iron oxides (FeCaCO) with a wide range of Fe/Ca mole ratios (x), prepared by co-precipitation. The hydrogen reduction of FeCaCO at 673 K gives up to 23% yield of the hydrocarbons CH4, C2H4, C2H6 and C3H8, leaving solid iron residues in the form of iron metal, oxides and carbide particles. The yield of hydrocarbons increases with x and the conversion of hydrocarbons occurs through the formation of CO. While the total yield of hydrocarbons obtained by us is comparable to that in the Fischer-Tropsch synthesis, the selectivity for C-2-C-3 hydrocarbons reported here is noteworthy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various morphologies of Eu3+ activated gadolinium oxide have been prepared by hydrothermal method using hexadecylamine (HDA) as surfactant at different experimental conditions. The powder X-ray diffraction studies reveal as-formed product is hexagonal Gd(OH)(3):Eu3+ phase and subsequent heat treatment at 350 and 600 degrees C transforms to monoclinic GdOOH:Eu3+ and cubic Gd2O3:Eu3+ phases respectively. SEM pictures of without surfactant show irregular shaped rods along with flakes. However, in the presence of HDA surfactant, the particles are converted into rods of various sizes. The temperature dependent morphological evolution of Gd2O3:Eu3+ without and with HDA surfactant is studied. TEM micrographs of Gd(OH)(3):Eu3+ sample with HDA confirms smooth nanorods with various diameters in the range 20-100 nm. FTIR studies reveal that HDA surfactant plays an important role in conversion of cubic to hexagonal phases. Among these three phases, cubic phase Gd2O3:Eu3+ (lambda(ex) = 254 nm) show red emission at 612 nm corresponding to D-5(0)-> F-7(2) and is more efficient host than the monoclinic counterpart. The band gap for hexagonal Gd(OH)(3):Eu3+ is more when compared to monoclinic GdOOH:Eu3+ and cubic Gd2O3:Eu3+. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a novel, rapid, and low-temperature method for the synthesis of undoped and Eu-doped GdOOH spherical hierarchical structures, without using any structure-directing agents, through the microwave irradiation route. The as-prepared product consists of nearly monodisperse microspheres measuring about 1.3 mu m in diameter. Electron microscopy reveals that each microsphere is an assembly of two-dimensional nanoflakes (about 30 nm thin) which, in turn, result from the assembly of crystallites measuring about 9 nm in diameter. Thus, a three-level hierarchy can be seen in the formation of the GdOOH microspheres: from nanoparticles to 2D nanoflakes to 3D spherical structures. When doped with Eu3+ ions, the GdOOH microspheres show a strong red emission, making them promising candidates as phosphors. Finally, thermal conversion at modest temperatures leads to the formation of corresponding oxide structures with enhanced luminescence, while retaining the spherical morphology of their oxyhydroxide precursor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advanced bus-clamping switching sequences, which employ an active vector twice in a subcycle, are used to reduce line current distortion and switching loss in a space vector modulated voltage source converter. This study evaluates minimum switching loss pulse width modulation (MSLPWM), which is a combination of such sequences, for static reactive power compensator (STATCOM) application. It is shown that MSLPWM results in a significant reduction in device loss over conventional space vector pulse width modulation. Experimental verification is presented at different power levels of up to 150 kVA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gd1.96-xYxEu0.04O3 (x = 0.0, 0.49, 0.98, 1.47, 1.96 mol%) nanophosphors were synthesized by propellant combustion method at low temperature (400 degrees C). The powder X-ray diffraction patterns of as formed Gd1.96Eu0.04O3 showed monoclinic phase, however with the addition of yttria it transforms from monoclinic to pure cubic phase. The porous nature increases with increase of yttria content. The particle size was estimated from Scherrer's and W-H plots which was found to be in the range 30-40 nm. These results were in well agreement with transmission electron microscopy studies. The optical band gap energies estimated were found to be in the range 5.32-5.49 eV. PL emission was recorded under 305 nm excitation show an intense emission peak at 611 nm along with other emission peaks at 582, 641 nm. These emission peaks were attributed to the transition of D-5(0) —> F-7(J) (J = 0, 1, 2, 3) of Eu3+ ions. It was observed that PL intensity increases with increase of Y content up to x = 0.98 and thereafter intensity decreases. CIE color co-ordinates indicates that at x = 1.47 an intense red bright color can be achieved, which could find a promising application in flat panel displays. The cubic and monoclinic phases show different thermoluminescence glow peak values measured under identical conditions. The response of the cubic phase to the applied dose showed good linearity, negligible fading, and simple glow curve structure than monoclinic phase indicating that suitability of this phosphor in dosimetric applications. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CaTiO3:Sm3+ (1-11 mol%) nanophosphors were successfully synthesized by a low temperature solution combustion method LCS]. The structural and morphological properties of the phosphors were studied by using Powder X-ray diffractometer (PXRD), Fourier transform infrared (FTIR), X-ray photo electron spectroscopy (XPS), scanning electron microscope (SEM) and transmission electron microscopy (TEM). TEM studies indicate that the size of the phosphor is similar to 20-35 nm. Photoluminescence (PL) properties of Sm3+ (1-11 mol%) doped CaTiO3 for NUV excitation (407 nm) was studied in order to investigate the possibility of its use in White light emitting diode (WLED) applications. The emission spectra consists of intra 4f transitions of Sm3+, such as (4)G(5/2) -> H-6(5/2) (561 nm), (4)G(5/2) -> H-6(7/2) (601-611 nm), (4)G(5/2) -> H-6(9/2) (648 nm) and (4)G(5/2) -> H-6(11/2) (703 nm) respectively. Further, the emission at 601-611 nm show strong orange-red emission and can be applied to the orange-red emission of phosphor for the application for near ultra violet (NUV) excitation. Thermoluminescence (TL) of the samples irradiated with gamma source in the dose range 100-500 Gy was recorded at a heating rate of 5 degrees C s(-1). Two well resolved glow peaks at 164 degrees C and 214 degrees C along with shouldered peak at 186 degrees C were recorded. TL intensity increases up to 300 Gy and thereafter, it decreases with further increase of dose. The kinetic parameters namely activation energy (E), frequency factor (s) and order of kinetics were estimated and results were discussed in detail. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optically Stimulated Luminescence (OSL) dating gives the age of most recent daylight exposure or heating of samples to >400 degrees C or the formation events of authigenic minerals. These correspond to the age of sedimentation and burial, ages of thermal events like contact heating by lava flows and heating during faulting and sand dyke formation, and the formation of a mineral via chemical precipitation. With the first observation of OSL in 1985, this method now occupies centre stage in Quaternary Geochronology. The use of OSL method for sediments from Himalaya began over three decades ago. The method has since provided chronology for a variety of events, such as past glaciation events, formation ages of river terraces, paleo-lacustrine deposits, landslides, floods, seismic events with substantive new insights into timing and style of geological processes. Theoretically, the dating range of method is present to a Million years, and this critically depends on two factors, viz, luminescence properties of mineral and their radiation environments. The general working range using quartz is 200ka, and using feldspars is up to Brunhes Matuyam Boundary. Extensions beyond this limit are currently being explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

White-light emitting Dy3+ doped layered BiOCl phosphors were synthesized by the solid state route and their structure was confirmed by the Rietveld refinement method. On substitution of Dy3+ ion to Bi3+-site in BiOCl, the photoluminescence spectra exhibit blue (F-4(9/2) -> H-6(15/2)), yellow (F-4(9/2) -> H-6(13/2)) and red (F-4(9/2) -> H-6(11/2)) emissions which function together to generate white light. It was found that the emission intensity increases up to 9 mol% of Dy3+ and then quenched due to dipole-dipole interaction. Judd-Ofelt theory and radiative properties suggest that the present phosphors have a long lifetime, high quantum efficiency, excellent color purity and better stimulated emission cross-section compared to reported Dy3+ doped compounds. The obtained color chromaticity results are close to the National Television System Committee standard and clearly establish the bright prospects of these phosphors in white luminescence. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

White-light emitting Dy3+ doped layered BiOCl phosphors were synthesized by the solid state route and their structure was confirmed by the Rietveld refinement method. On substitution of Dy3+ ion to Bi3+-site in BiOCl, the photoluminescence spectra exhibit blue (F-4(9/2) -> H-6(15/2)), yellow (F-4(9/2) -> H-6(13/2)) and red (F-4(9/2) -> H-6(11/2)) emissions which function together to generate white light. It was found that the emission intensity increases up to 9 mol% of Dy3+ and then quenched due to dipole-dipole interaction. Judd-Ofelt theory and radiative properties suggest that the present phosphors have a long lifetime, high quantum efficiency, excellent color purity and better stimulated emission cross-section compared to reported Dy3+ doped compounds. The obtained color chromaticity results are close to the National Television System Committee standard and clearly establish the bright prospects of these phosphors in white luminescence. (C) 2015 Elsevier Ltd. All rights reserved.