116 resultados para Two-component Regulatory System
em Indian Institute of Science - Bangalore - Índia
Resumo:
In Mycobacterium tuberculosis Rv1027c-Rv1028c genes are predicted to encode KdpDE two component system, which is highly conserved across all bacterial species. Here, we show that the system is functionally active and KdpD sensor kinase undergoes autophosphorylation and transfers phosphoryl group to KdpE, response regulator protein. We identified His(642) and Asp(52) as conserved phosphorylation sites in KdpD and KdpE respectively and by SPR analysis confirmed the physical interaction between them. KdpD was purified with prebound divalent ions and their importance in phosphorylation was established using protein refolding and ion chelation approaches. Genetically a single transcript encoded both KdpD and KdpE proteins. Overall, we report that M. tuberculosis KdpDE system operates like a canonical two component system. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
We demonstrate the aptitude of supramolecular hydrogel formation using simple bile acid such as lithocholic acid in aqueous solution in the presence of various dimeric or oligomeric amines. By variation of the choice of the amines in such mixtures the gelation properties could be modulated. However, the replacement of lithocholic acid (LCA) by cholic acid or deoxycholic acid resulted in no hydrogel formation. FT-IR studies confirm that the carboxylate and ammonium residues of the two components are involved in the salt (ion-pair) formation. This promotes further assembly of the components reinforced by a continuous hydrogen bonded network leading to gelation. Electron microscopy shows the morphology of the internal organization of gels of two component systems which also depends significantly on the amine part. Variation of the amine component from the simple 1,2-ethanediamine (EDA) to oligomeric amines in such gels of lithocholic acid changes the morphology of the assembly from long one-dimensional nanotubes to three-dimensional complex structures. Single crystal X-ray diffraction analysis with one of the amine-LCA complexes suggested the motif of fiber formation where the amines interact with the carboxylate and hydroxyl moieties through electrostatic forces and hydrogen bonding. From small angle neutron scattering study, it becomes clear that the weak gel from LCA-EDA shows scattering oscillation due to the presence of non-interacting nanotubules while for gels of LCA with oligomeric amines the individual fibers come together to form complex three-dimensional organizations of higher length scale. The rheological properties of this class of two component system provide clear evidence that the flow behavior can be modulated varying the acid-amine ratio.
Resumo:
We investigate the Nernst effect in a mesoscopic two-dimensional electron system (2DES) at low magnetic fields, before the onset of Landau level quantization. The overall magnitude of the Nernst signal agrees well with semiclassical predictions. We observe reproducible mesoscopic fluctuations in the signal that diminish significantly with an increase in temperature. We also show that the Nernst effect exhibits an anomalous component that is correlated with an oscillatory Hall effect. This behavior may be able to distinguish between different spin-correlated states in the 2DES.
Resumo:
N-Decanoyl-L-alanine (DA) was mixed with either colorless 4,4-bipyridine (BP) or various derivatives such as chromogenic oligo(p-phenylenevinylene) (OPV) functionalized with isomeric pyridine termini in specific molar ratios. This mixtures form salt-type gels in a water/ethanol (2:1, v/v) mixture. The gelation properties of these two-component mixtures could be modulated by variation of the position of the N atom of the end pyridyl groups in OPVs. The presence of acid-base interactions in the self-assembly of these two-component systems leading to gelation was probed in detail by using stoichiometry-dependent UV/Vis and FTIR spectroscopy. Furthermore, temperature-dependent UV/Vis and fluorescence spectroscopy clearly demonstrated a J-type aggregation mode of these gelator molecules during the sol-to-gel transition process. Morphological features and the arrangement of the molecules in the gels were examined by using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) techniques. Calculation of the length of each molecular system by energy minimization in its extended conformation and comparison with the XRD patterns revealed that this class of gelator molecules adopts lamellar organizations. Rheological properties of these two-component systems provided clear evidence that the flow behavior could be modulated by varying the acid/amine ratio. Polarized optical microscopy (POM), differential scanning calorimetry (DSC), and XRD results revealed that the solid-phase behavior of such two-component mixtures (acid/base=2:1) varied significantly upon changing the proton-acceptor part from BP to OPV. Interestingly, the XRD pattern of these acid/base mixtures after annealing at their associated isotropic temperature was significantly different from that of their xerogels.
Resumo:
Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the `feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony.
Resumo:
The present study simulates a two-stage silica gel + water adsorption desalination (AD) and chiller system. The adsorber system thermally compresses the low pressure steam generated in the evaporator to the condenser pressure in two stages. Unlike a standalone adsorption chiller unit which operates in a closed cycle the present system is an open cycle wherein the condensed desalinated water is not fed back to the evaporator. The mathematical relations formulated in the current study are based on conservation of mass and energy along with isotherm relation and kinetics for RD-type silica gel + water pair. Various constitutive relations for each component namely the evaporator, adsorber and condenser are integrated in the model. The dynamics of heat exchanger are modeled using LMTD method, and LDF model is used to predict the dynamic characteristic of the adsorber bed. The system performance indicators namely, specific cooling capacity (SCC), specific daily water production (SDWP) and coefficient of performance (COP) are used as objective functions to optimize the system. The novelty of the present work is in introduction of inter-stage pressure as a new parameter for optimizing the two-stage operation of AD chiller system. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We present results from numerical simulations using a ‘‘cell-dynamical system’’ to obtain solutions to the time-dependent Ginzburg-Landau equation for a scalar, two-dimensional (2D), (Φ2)2 model in the presence of a sinusoidal external magnetic field. Our results confirm a recent scaling law proposed by Rao, Krishnamurthy, and Pandit [Phys. Rev. B 42, 856 (1990)], and are also in excellent agreement with recent Monte Carlo simulations of hysteretic behavior of 2D Ising spins by Lo and Pelcovits [Phys. Rev. A 42, 7471 (1990)].
Resumo:
We present thermal and electrical transport measurements of low-density (10(14) m(-2)), mesoscopic two-dimensional electron systems (2DESs) in GaAs/AlGaAs heterostructures at sub-Kelvin temperatures. We find that even in the supposedly strongly localized regime, where the electrical resistivity of the system is two orders of magnitude greater than the quantum of resistance h/e(2), the thermopower decreases linearly with temperature indicating metallicity. Remarkably, the magnitude of the thermopower exceeds the predicted value in noninteracting metallic 2DESs at similar carrier densities by over two orders of magnitude. Our results indicate a new quantum state and possibly a novel class of itinerant quasiparticles in dilute 2DESs at low temperatures where the Coulomb interaction plays a pivotal role.
Resumo:
Organogels made of pyridine-end oligo-p-phenylenevinylenes with tartaric acid exhibit remarkable J-aggregation induced red-shifts (Dk = 55 nm) and notable chirality transcription. Induction of liquid-crystalline behavior is also tuned in the supramolecular assembly.
Resumo:
We report thermopower (S) and electrical resistivity (rho (2DES) ) measurements in low-density (10(14) m(-2)), mesoscopic two-dimensional electron systems (2DESs) in GaAs/AlGaAs heterostructures at sub-Kelvin temperatures. We observe at temperatures a parts per thousand(2)0.7 K a linearly growing S as a function of temperature indicating metal-like behaviour. Interestingly this metallicity is not Drude-like, showing several unusual characteristics: (i) the magnitude of S exceeds the Mott prediction valid for non-interacting metallic 2DESs at similar carrier densities by over two orders of magnitude; and (ii) rho (2DES) in this regime is two orders of magnitude greater than the quantum of resistance h/e (2) and shows very little temperature-dependence. We provide evidence suggesting that these observations arise due to the formation of novel quasiparticles in the 2DES that are not electron-like. Finally, rho (2DES) and S show an intriguing decoupling in their density-dependence, the latter showing striking oscillations and even sign changes that are completely absent in the resistivity.
Resumo:
In this paper, we consider the inference for the component and system lifetime distribution of a k-unit parallel system with independent components based on system data. The components are assumed to have identical Weibull distribution. We obtain the maximum likelihood estimates of the unknown parameters based on system data. The Fisher information matrix has been derived. We propose -expectation tolerance interval and -content -level tolerance interval for the life distribution of the system. Performance of the estimators and tolerance intervals is investigated via simulation study. A simulated dataset is analyzed for illustration.
Resumo:
Two-component systems (TCSs), which contain paired sensor kinase and response regulator proteins, form the primary apparatus for sensing and responding to environmental cues in bacteria. TCSs are thought to be highly specific, displaying minimal cross-talk, primarily due to the co-evolution of the participating proteins. To assess the level of cross-talk between the TCSs of Mycobacterium tuberculosis, we mapped the complete interactome of the M. tuberculosis TCSs using phosphotransfer profiling. Surprisingly, we found extensive crosstalk among the M. tuberculosis TCSs, significantly more than that in the TCSs in Escherichia coli or Caulobacter crescentus, thereby offering an alternate to specificity paradigm in TCS signalling. Nearly half of the interactions we detected were significant novel cross-interactions, unravelling a potentially complex signalling landscape. We classified the TCSs into specific `one-to-one' and promiscuous `one-to-many' and `many-to-one' circuits. Using mathematical modelling, we deduced that the promiscuous signalling observed can explain several currently confounding observations about M. tuberculosis TCSs. Our findings suggest an alternative paradigm of bacterial signalling with significant cross-talk between TCSs yielding potentially complex signalling landscapes.
Resumo:
The LysR-type transcriptional regulators (LTTRs) are widely distributed in various genera of prokaryotes LTTRs are DNA binding proteins that can positively or negatively regulate target gene expression and can also repress their own transcription Salmonella enterica comprises a group of Gram-negative bacteria capable of causing clinical syndromes that range from self-limiting diarrhoea to severe fibrinopurulent necrotizing enteritis and life threatening systemic disease. The survival and replication of Salmonella in macrophages and in infected host is brought about by the means of various two component regulatory systems, transporters and other virulence islands In Salmonella genome the existence of 44 LTTRs has been documented These LTTRs regulate bacterial stress response. systemic virulence in mice and also many virulence determinants in vitro. Here we focus on the findings that elucidate the structure and function of the LTTRs in Salmonella and discuss the importance of these LTTRs in making Salmonella a Successful pathogen...
Two-dimensional moist stratified turbulence and the emergence of vertically sheared horizontal flows
Resumo:
Moist stratified turbulence is studied in a two-dimensional Boussinesq system influenced by condensation and evaporation. The problem is set in a periodic domain and employs simple evaporation and condensation schemes, wherein both the processes push parcels towards saturation. Numerical simulations demonstrate the emergence of a moist turbulent state consisting of ordered structures with a clear power-law type spectral scaling from initially spatially uncorrelated conditions. An asymptotic analysis in the limit of rapid condensation and strong stratification shows that, for initial conditions with enough water substance to saturate the domain, the equations support a straightforward state of moist balance characterized by a hydrostatic, saturated, vertically sheared horizontal flow (VSHF). For such initial conditions, by means of long time numerical simulations, the emergence of moist balance is verified. Specifically, starting from uncorrelated data, subsequent to the development of a moist turbulent state, the system experiences a rather abrupt transition to a regime which is close to saturation and dominated by a strong VSHF. On the other hand, initial conditions which do not have enough water substance to saturate the domain, do not attain moist balance. Rather, the system is observed to remain in a turbulent state and oscillates about moist balance. Even though balance is not achieved with these general initial conditions, the time scale of oscillation about moist balance is much larger than the imposed time scale of condensation and evaporation, thus indicating a distinct dominant slow component in the moist stratified two-dimensional turbulent system. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694805]
Resumo:
Multidrug-resistant Salmonella serovars have been a recent concern in curing infectious diseases like typhoid. Salmonella BaeS and BaeR are the two-component system (TCS) that signal transduction proteins found to play an important role in its multidrug resistance. A canonical TCS comprises a histidine kinase (HK) and its cognate partner response regulator (RR). The general approaches for therapeutic targeting are either the catalytic ATP-binding domain or the dimerization domain HisKA (DHp) of the HK, and in some cases, the receiver or the regulatory domain of the RR proteins. Earlier efforts of identifying novel drugs targeting the signal transduction protein have not been quite successful, as it shares similar ATP-binding domain with the key house keeping gene products of the mammalian GHL family. However, targeting the dimerization domain of HisKA through which the signals are received from the RR can be a better approach. In this article, we show stepwise procedure to specifically identify the key interacting residues involved in the dimerization with the RR along with effective targeting by ligands screened from the public database. We have found a few inhibitors which target effectively the important residues for the dimerization activity. Our results suggest a plausible de novo design of better DHp domain inhibitors.