170 resultados para Tropical region

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current study presents an algorithm to retrieve surface Soil Moisture (SM) from multi-temporal Synthetic Aperture Radar (SAR) data. The developed algorithm is based on the Cumulative Density Function (CDF) transformation of multi-temporal RADARSAT-2 backscatter coefficient (BC) to obtain relative SM values, and then converts relative SM values into absolute SM values using soil information. The algorithm is tested in a semi-arid tropical region in South India using 30 satellite images of RADARSAT-2, SMOS L2 SM products, and 1262 SM field measurements in 50 plots spanning over 4 years. The validation with the field data showed the ability of the developed algorithm to retrieve SM with RMSE ranging from 0.02 to 0.06 m(3)/m(3) for the majority of plots. Comparison with the SMOS SM showed a good temporal behaviour with RMSE of approximately 0.05 m(3)/m(3) and a correlation coefficient of approximately 0.9. The developed model is compared and found to be better than the change detection and delta index model. The approach does not require calibration of any parameter to obtain relative SM and hence can easily be extended to any region having time series of SAR data available.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Design considerations are presented for a dense weather radar network to support multiple services including aviation. Conflicts, tradeoffs and optimization issues in the context of operation in a tropical region are brought out. The upcoming Indian radar network is used as a case study. Algorithms for data mosaicing are briefly outlined.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Systematic monitoring of subsurface hydrogeochemistry has been carried out for a period of one year in a humid tropical region along the Nethravati-Gurupur River. The major ion and stable isotope (delta O-18 and delta H-2) compositions are used to understand the hydrogeochemistry of groundwater and its interaction with surface water. In the study, it is observed that intense weathering of source rocks is the major source of chemical elements to the surface and subsurface waters. In addition, agricultural activities and atmospheric contributions also control the major ion chemistry of water in the study area. There is a clear seasonality in the groundwater chemistry, which is related to the recharge and discharge of the hydrological system. On a temporal scale, there is a decrease in major cation concentrations during the monsoon which is a result of dilution of sources from the weathering of rock minerals, and an increase in anion concentrations which is contributed by the atmosphere, accompanied by an increase in water level during the monsoon. The stable isotope composition indicates that groundwater in the basin is of meteoric origin and recharged directly from the local precipitation during the monsoonal season. Soon after the monsoon, groundwater and surface water mix in the subsurface region. The groundwater feeds the surface water during the lean river flow season.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have compiled a checklist of Gomphonema Ehrenberg taxa reported previously from India. From forty-nine references, over 100 Gomphonema taxa have been reported, including 39 new taxon descriptions. In addition to these previous reports of Gomphonema taxa, we describe three new species. G. gandhii Karthick & Kociolek, sp. nov., G. difformum Karthick & Kociolek, sp. nov. and G. diminutum Karthick & Kociolek, sp. nov., all from hill streams of Western Ghats, India. Frustule morphology, as studied in light and scanning electron microscopy, is compared with that of other recently described Gomphonema species from Africa and Asia. All three Indian species have distinctly dilated proximal raphe ends, in addition to differentiated apical pore fields, septa, pseudosepta and a round external stigma! opening. Gomphonema gandhii is linear-lanceolate-clavate, has a wide axial area, and is 19-51 mu m long, 3-7 mu m broad. Gomphonema difformum is smaller than G. gandhii, and has a hyaline area around the headpole. Gomphonema diminuta is much smaller and narrower than the other two species. These species are distinct from their closest congeners by their sizes, shape and structure of the head pole, and striae densities. All these species were described from low nutrient, neutral, low ionic content streams of Western Ghats. As most other species described from tropical region these three species appear to be endemic to India. Moreover, within India they have hitherto only been found in Western Ghats, one of the twelve biodiversity hotspots of the World.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Black carbon (BC) aerosol mass concentrations measured using an aethalometer at Anantapur, a semi-arid tropical station in the southern part of peninsular India, from August 2006 to July 2007 are analyzed. Seasonal and diurnal variations of BC in relation to changes in the regional meteorological conditions have been studied along with the mass fraction of BC to the total aerosol mass concentration (M-t) and fine particle mass (FPM) concentration in different months. The data collected during the study period shows that the annual average BC mass concentration at Anantapur is 1.97 +/- 0.12 mu g m(-3). Seasonal variations of BC aerosol mass concentration showed high during the dry (winter and summer) seasons and low during the post-monsoon followed by the monsoon seasons. Diurnal variations of BC aerosols attain a gradual build up in BC concentration from morning and a sharp peak occurs between 07:00 and 09:00 h almost an hour after local sunrise and a broad nocturnal peak from 19:00 to 21:00 h with a minimum in noon hours. The ratio of BC to the fine particle mass concentration was high during the dry season and low during the monsoon season. The regression analysis between BC mass concentration and wind speed indicates that, with increase in wind speeds the BC mass concentrations would decrease and vice-versa. Aerosol BC mass concentration shows a significant positive correlation with total mass concentration (M-t) and aerosol optical depth (ACID, tau(p)) at 500 nm. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present here the first statistically calibrated and verified tree-ring reconstruction of climate from continental Southeast Asia.The reconstructed variable is March-May (MAM) Palmer Drought Severity Index (PDSI) based on ring widths from 22 trees (42 radial cores) of rare and long-lived conifer, Fokienia hodginsii (Po Mu as locally called) from northern Vietnam. This is the first published tree ring chronology from Vietnam as well as the first for this species. Spanning 535 years, this is the longest cross-dated tree-ring series yet produced from continental Southeast Asia. Response analysis revealed that the annual growth of Fokienia at this site was mostly governed by soil moisture in the pre-monsoon season. The reconstruction passed the calibration-verification tests commonly used in dendroclimatology, and revealed two prominent periods of drought in the mid-eighteenth and late-nineteenth enturies. The former lasted nearly 30 years and was concurrent with a similar drought over northwestern Thailand inferred from teak rings, suggesting a ``mega-drought'' extending across Indochina in the eighteenth century. Both of our reconstructed droughts are consistent with the periods of warm sea surface temperature (SST)anomalies in the tropical Pacific. Spatial correlation analyses with global SST indicated that ENSO-like anomalies might play a role in modulating droughts over the region, with El Nio (warm) phases resulting in reduced rainfall. However, significant correlation was also seen with SST over the Indian Ocean and the north Pacific,suggesting that ENSO is not the only factor affecting the climate of the area. Spectral analyses revealed significant peaks in the range of 53.9-78.8 years as well as in the ENSO-variability range of 2.0 to 3.2 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable carbon isotope ratios of peats dated (by C-14) back to 40 kyr BP from the montane region (> 1800 m asl) of the Nilgiris, southern India, reflect changes in the relative proportions of C3 and C4 plant types, which are influenced by soil moisture (and hence monsoonal precipitation), From prior to 40 kyr BP until 28 kyr BP, a general decline in delta(13)C values from about - 14 per mil to - 19 per mil suggests increased dominance of C3 plants concurrent with increasingly moist conditions, During 28-18 kyr BP there seems relatively little change with delta(13) C of - 19 to - 18 per mil, At about 16 kyr BP a sharp reversal in delta(13)C to a peak of - 14.7 per mil indicates a clear predominance of C4 vegetation associated with arid conditions, possibly during or just after the Last Glacial Maximum, A moist phase at about 9 kyr BP (the Holocene Optimum) with dominance of C3 vegetation type is observed, while arid conditions are re-established during 5-2 kyr BP with an overall dominance of C4 vegetation, New data do not support the occurrence of a moist phase coinciding with the Mediaeval Warm Period (at 0.6 kyr BP) as suggested earlier, Overall, the climate and vegetation in the high altitude regions of the southern Indian tropics seem to have responded to past global climatic changes, and this is consistent with other evidences from India and other tropical regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most important modes of summer season precipitation variability over the Indian region, the diurnal cycle, is studied using the Tropical Rainfall Measuring Mission 3-hourly, 0.25 degrees x 0.25 degrees 3B42 rainfall product for nine years (1999-2007). Most previous studies have provided an analysis of a single year or a few years of satellite-or station-based rainfall data. Our study aims to systematically analyze the statistical characteristics of the diurnal-scale signature of rainfall over the Indian and surrounding regions. Using harmonic analysis, we extract the signal corresponding to diurnal and subdiurnal variability. Subsequently, the 3-hourly time period or the octet of rainfall peak for this filtered signal, referred to as the ``peak octet,'' is estimated, with care taken to eliminate spurious peaks arising out of Gibbs oscillations. Our analysis suggests that over the Bay of Bengal, there are three distinct modes of the peak octet of diurnal rainfall corresponding to 1130, 1430, and 1730 Indian standard time (IST), from the north central to south bay. This finding could be seen to be consistent with southward propagation of the diurnal rainfall pattern reported by earlier studies. Over the Arabian Sea, there is a spatially coherent pattern in the mode of the peak octet (1430 IST), in a region where it rains for more than 30% of the time. In the equatorial Indian Ocean, while most of the western part shows a late night/early morning peak, the eastern part does not show a spatially coherent pattern in the mode of the peak octet owing to the occurrence of a ual maxima (early morng and early/late afternoon). The imalayan foothills were found to have a mode of peak octet corresponding to 0230 IST, whereas over the Burmese mountains and the Western Ghats (west coast of India) the rainfall peaks during late afternoon/early evening (1430-1730 IST). This implies that the phase of the diurnal cycle over inland orography (e. g., Himalayas) is significantly different from coastal orography (e. g., Western Ghats). We also find that over the Gangetic plains, the peak octet is around 1430 IST, a few hours earlier compared to the typical early evening maxima over land.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study uses the European Centre for Medium-Range Weather Forecasts (ECMWF) model-generated high-resolution 10-day-long predictions for the Year of Tropical Convection (YOTC) 2008. Precipitation forecast skills of the model over the tropics are evaluated against the Tropical Rainfall Measuring Mission (TRMM) estimates. It has been shown that the model was able to capture the monthly to seasonal mean features of tropical convection reasonably. Northward propagation of convective bands over the Bay of Bengal was also forecasted realistically up to 5 days in advance, including the onset phase of the monsoon during the first half of June 2008. However, large errors exist in the daily datasets especially for longer lead times over smaller domains. For shorter lead times (less than 4-5 days), forecast errors are much smaller over the oceans than over land. Moreover, the rate of increase of errors with lead time is rapid over the oceans and is confined to the regions where observed precipitation shows large day-to-day variability. It has been shown that this rapid growth of errors over the oceans is related to the spatial pattern of near-surface air temperature. This is probably due to the one-way air-sea interaction in the atmosphere-only model used for forecasting. While the prescribed surface temperature over the oceans remain realistic at shorter lead times, the pattern and hence the gradient of the surface temperature is not altered with change in atmospheric parameters at longer lead times. It has also been shown that the ECMWF model had considerable difficulties in forecasting very low and very heavy intensity of precipitation over South Asia. The model has too few grids with ``zero'' precipitation and heavy (>40 mm day(-1)) precipitation. On the other hand, drizzle-like precipitation is too frequent in the model compared to that in the TRMM datasets. Further analysis shows that a major source of error in the ECMWF precipitation forecasts is the diurnal cycle over the South Asian monsoon region. The peak intensity of precipitation in the model forecasts over land (ocean) appear about 6 (9) h earlier than that in the observations. Moreover, the amplitude of the diurnal cycle is much higher in the model forecasts compared to that in the TRMM estimates. It has been seen that the phase error of the diurnal cycle increases with forecast lead time. The error in monthly mean 3-hourly precipitation forecasts is about 2-4 times of the error in the daily mean datasets. Thus, effort should be given to improve the phase and amplitude forecast of the diurnal cycle of precipitation from the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The convective available potential energy (CAFE) based on monthly mean sounding has been shown to be relevant to deep convection in the tropics. The variation of CAFE with SST has been found to be similar to the variation of the frequency of deep convection at one station each in the tropical Atlantic and W. Pacific oceans. This suggests a strong link between the frequency of tropical convection and CAFE. It has been shown that CAFE so derived can be interpreted as the work potential of the atmosphere above the boundary layer with ascent in the convective region and subsidence in the surrounding cloud-free region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Malabar Pied Hornbill, Anthracoceros coronatus, is a near threatened species, endemic to the tropical deciduous forests of central and southern India and Sri Lanka. The Dandeli region in Karnataka (India) is believed to be the last stronghold of this species in the Western Ghats biodiversity hotspot. Being a rapidly developing area with a growing human population, the threats to this species and their habitat are mounting, especially due to a large number of hydroelectric projects and habitat fragmentation caused by paper and plywood industries. This study evaluated the change in population status of the Malabar Pied Hornbill over a 23 year period and defined priorities for the long term conservation and monitoring of hornbills in Dandeli. Encounter rates of hornbills were also analysed in relation to the density and species richness of trees and fruiting trees, basal area, canopy cover and distance from river. Hornbill encounters were not significantly different compared to the earlier study carried out by Reddy in 1988, but were significantly different across the five sites in the current study. Higher numbers of hornbills were encountered closer to the river, but these results were only marginally significant. The mean numbers of hornbills recorded at the two roost sites identified in Dandeli were 26 +/- 4.47 (n=16 counts) and 31.78 +/- 3.53 (n=14 counts) respectively. The study also helped build local awareness about the species, train local Forest Department staff in monitoring hornbills and develop a management plan for its conservation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors present the simulation of the tropical Pacific surface wind variability by a low-resolution (R15 horizontal resolution and 18 vertical levels) version of the Center for Ocean-Land-Atmosphere Interactions, Maryland, general circulation model (GCM) when forced by observed global sea surface temperature. The authors have examined the monthly mean surface winds acid precipitation simulated by the model that was integrated from January 1979 to March 1992. Analyses of the climatological annual cycle and interannual variability over the Pacific are presented. The annual means of the simulated zonal and meridional winds agree well with observations. The only appreciable difference is in the region of strong trade winds where the simulated zonal winds are about 15%-20% weaker than observed, The amplitude of the annual harmonics are weaker than observed over the intertropical convergence zone and the South Pacific convergence zone regions. The amplitudes of the interannual variation of the simulated zonal and meridional winds are close to those of the observed variation. The first few dominant empirical orthogonal functions (EOF) of the simulated, as well as the observed, monthly mean winds are found to contain a targe amount of high-frequency intraseasonal variations, While the statistical properties of the high-frequency modes, such as their amplitude and geographical locations, agree with observations, their detailed time evolution does not. When the data are subjected to a 5-month running-mean filter, the first two dominant EOFs of the simulated winds representing the low-frequency EI Nino-Southern Oscillation fluctuations compare quite well with observations. However, the location of the center of the westerly anomalies associated with the warm episodes is simulated about 15 degrees west of the observed locations. The model simulates well the progress of the westerly anomalies toward the eastern Pacific during the evolution of a warm event. The simulated equatorial wind anomalies are comparable in magnitude to the observed anomalies. An intercomparison of the simulation of the interannual variability by a few other GCMs with comparable resolution is also presented. The success in simulation of the large-scale low-frequency part of the tropical surface winds by the atmospheric GCM seems to be related to the model's ability to simulate the large-scale low-frequency part of the precipitation. Good correspondence between the simulated precipitation and the highly reflective cloud anomalies is seen in the first two EOFs of the 5-month running means. Moreover, the strong correlation found between the simulated precipitation and the simulated winds in the first two principal components indicates the primary role of model precipitation in driving the surface winds. The surface winds simulated by a linear model forced by the GCM-simulated precipitation show good resemblance to the GCM-simulated winds in the equatorial region. This result supports the recent findings that the large-scale part of the tropical surface winds is primarily linear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high concentration of the world's species in tropical forests endows these systems with particular importance for retaining global biodiversity, yet it also presents significant challenges for ecology and conservation science. The vast number of rare and yet to be discovered species restricts the applicability of species-level modelling for tropical forests, while the capacity of community classification approaches to identify priorities for conservation and management is also limited. Here we assessed the degree to which macroecological modelling can overcome shortfalls in our knowledge of biodiversity in tropical forests and help identify priority areas for their conservation and management. We used 527 plant community survey plots in the Australian Wet Tropics to generate models and predictions of species richness, compositional dissimilarity, and community composition for all the 4,313 vascular plant species recorded across the region (>1.3 million communities (grid cells)). We then applied these predictions to identify areas of tropical forest likely to contain the greatest concentration of species, rare species, endemic species and primitive angiosperm families. Synthesising these alternative attributes of diversity into a single index of conservation value, we identified two areas within the Australian wet tropics that should be a high priority for future conservation actions: the Atherton Tablelands and Daintree rainforest. Our findings demonstrate the value of macroecological modelling in identifying priority areas for conservation and management actions within highly diverse systems, such as tropical forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current understanding of wildfire effects on water chemistry is limited by the quantification of the elemental dissolution rates from ash and element release rate from the plant litter, as well as quantification of the specific ash contribution to stream water chemistry. The main objective of the study was to provide such knowledge through combination of experimental modelling, field data and end-member mixing analysis (EMMA) of wildfire impact on a watershed scale. The study concerns watershed effects of fire in the Indian subcontinent, a region that is typically not well represented in the fire science literature. In plant litter ash, major elements are either hosted in readily-soluble phases (K, Mg) such as salts, carbonates and oxides or in less-soluble carrier-phases (Si, Ca) such as amorphous silica, quartz and calcite. Accordingly, elemental release rates, inferred from ash leaching experiments in batch reactor, indicated that the element release into solution followed the order K > Mg > Na > Si > Ca. Experiments on plant litter leaching in mixed-flow reactor indicated two dissolution regimes: rapid, over the week and slower over the month. The mean dissolution rates at steady-state (R-ss) indicated that the release of major elements from plant litter followed the order Ca > Si > Cl > Mg > K > Na. R-ss for Si and Ca for tree leaves and herbaceous species are similar to those reported for boreal and European tree species and are higher than that from the dissolution of soil clay minerals. This identifies tropical plant litters as important source of Si and Ca for tropical surface waters. In the wildfire-impacted year 2004, the EMMA indicated that the streamflow composition (Ca, K, Mg, Na, Si, Cl) was controlled by four main sources: rainwater, throughfall, ash leaching and soil solution. The influence of the ash end-member was maximal early in the rainy season (the two first storm events) and decreased later in the rainy season, when the stream was dominated by the throughfall end-member. The contribution of plant litter decay to the streamwater composition for a year not impacted by wildfire is significant with estimated solute fluxes originating from this decay greatly exceed, for most major elements, the annual elemental dissolved fluxes at the Mule Hole watershed outlet. This highlighted the importance of solute retention and vegetation back uptake processes within the soil profile. Overall, the fire increased the mobility and export of major elements from the soils to the stream. It also shifted the vegetation-related contribution to the elemental fluxes at the watershed outlet from long-term (seasonal) to short-term (daily to monthly). (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between similar to 40,000 and similar to 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of similar to 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of similar to 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.