4 resultados para Tropical Australian Estuary
em Indian Institute of Science - Bangalore - Índia
Resumo:
Seasonal studies were carried out from 21 stations, comprising of three zones, of Cochin Estuary, to assess the organic matter quality and trophic status. The hydographical parameters showed significant seasonal variations and nutrients and chlorophylls were generally higher during the monsoon season. However, chemical contamination along with the seasonal limitations of light and nitrogen imposed restrictions on the primary production and as a result, mesotrophic conditions generally prevailed in the water column. The nutrient stoichometries and delta C-13 values of surficial sediments indicated significant allochthonous contribution of organic matter. Irrespective of the higher content of total organic matter, the labile organic matter was very low. Dominance of carbohydrates over lipids and proteins indicated the lower nutritive aspect of the organic matter, and their aged and refractory nature. This, along with higher amount of phytodetritus and the low algal contribution to the biopolymeric carbon corroborated the dominance of allochthonous organic matter and the heterotrophic nature. The spatial and seasonal variations of labile organic components could effectively substantiate the observed shift in the productivity pattern. An alternative ratio, lipids to tannins and lignins, was proposed to ascertain the relative contribution of allochthonous organic matter in the estuary. This study confirmed the efficiency of an integrated biogeochemical approach to establish zones with distinct benthic trophic status associated with different degrees of natural and anthropogenic input. Nevertheless, our results also suggest that the biochemical composition alone could lead to erroneous conclusions in the case of regions that receive enormous amounts of anthropogenic inputs.
Resumo:
The simulation characteristics of the Asian-Australian monsoon are documented for the Community Climate System Model, version 4 (CCSM4). This is the first part of a two part series examining monsoon regimes in the global tropics in the CCSM4. Comparisons are made to an Atmospheric Model Intercomparison Project (AMIP) simulation of the atmospheric component in CCSM4 Community Atmosphere Model, version 4, (CAM4)] to deduce differences in the monsoon simulations run with observed sea surface temperatures (SSTs) and with ocean-atmosphere coupling. These simulations are also compared to a previous version of the model (CCSM3) to evaluate progress. In general, monsoon rainfall is too heavy in the uncoupled AMIP run with CAM4, and monsoon rainfall amounts are generally better simulated with ocean coupling in CCSM4. Most aspects of the Asian-Australian monsoon simulations are improved in CCSM4 compared to CCSM3. There is a reduction of the systematic error of rainfall over the tropical Indian Ocean for the South Asian monsoon, and well-simulated connections between SSTs in the Bay of Bengal and regional South Asian monsoon precipitation. The pattern of rainfall in the Australian monsoon is closer to observations in part because of contributions from the improvements of the Indonesian Throughflow and diapycnal diffusion in CCSM4. Intraseasonal variability of the Asian-Australian monsoon is much improved in CCSM4 compared to CCSM3 both in terms of eastward and northward propagation characteristics, though it is still somewhat weaker than observed. An improved simulation of El Nino in CCSM4 contributes to more realistic connections between the Asian-Australian monsoon and El Nino-Southern Oscillation (ENSO), though there is considerable decadal and century time scale variability of the strength of the monsoon-ENSO connection.
Resumo:
The high concentration of the world's species in tropical forests endows these systems with particular importance for retaining global biodiversity, yet it also presents significant challenges for ecology and conservation science. The vast number of rare and yet to be discovered species restricts the applicability of species-level modelling for tropical forests, while the capacity of community classification approaches to identify priorities for conservation and management is also limited. Here we assessed the degree to which macroecological modelling can overcome shortfalls in our knowledge of biodiversity in tropical forests and help identify priority areas for their conservation and management. We used 527 plant community survey plots in the Australian Wet Tropics to generate models and predictions of species richness, compositional dissimilarity, and community composition for all the 4,313 vascular plant species recorded across the region (>1.3 million communities (grid cells)). We then applied these predictions to identify areas of tropical forest likely to contain the greatest concentration of species, rare species, endemic species and primitive angiosperm families. Synthesising these alternative attributes of diversity into a single index of conservation value, we identified two areas within the Australian wet tropics that should be a high priority for future conservation actions: the Atherton Tablelands and Daintree rainforest. Our findings demonstrate the value of macroecological modelling in identifying priority areas for conservation and management actions within highly diverse systems, such as tropical forests.
Resumo:
AimBiodiversity outcomes under global change will be influenced by a range of ecological processes, and these processes are increasingly being considered in models of biodiversity change. However, the level of model complexity required to adequately account for important ecological processes often remains unclear. Here we assess how considering realistically complex frugivore-mediated seed dispersal influences the projected climate change outcomes for plant diversity in the Australian Wet Tropics (all 4313 species). LocationThe Australian Wet Tropics, Queensland, Australia. MethodsWe applied a metacommunity model (M-SET) to project biodiversity outcomes using seed dispersal models that varied in complexity, combined with alternative climate change scenarios and habitat restoration scenarios. ResultsWe found that the complexity of the dispersal model had a larger effect on projected biodiversity outcomes than did dramatically different climate change scenarios. Applying a simple dispersal model that ignored spatial, temporal and taxonomic variation due to frugivore-mediated seed dispersal underestimated the reduction in the area of occurrence of plant species under climate change and overestimated the loss of diversity in fragmented tropical forest remnants. The complexity of the dispersal model also changed the habitat restoration approach identified as the best for promoting persistence of biodiversity under climate change. Main conclusionsThe consideration of complex processes such as frugivore-mediated seed dispersal can make an important difference in how we understand and respond to the influence of climate change on biodiversity.