6 resultados para Tribute

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Professor C. N. R. Rao will celebrate his 75th birthday in June 2009. As one of the world's foremost solid-state and materials chemists, he has had an enormous influence on generations of chemists throughout India and the world. Celebrations of Professor Rao's 75th birthday started already last June and will culminate on June 30, 2009. As part of these celebrations and to give tribute to Professor Rao's illustrious career and contributions to the chemistry community, this special issue in honor of this occasion includes 27 invited contributions from top scientists throughout the world, including a special

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Madras triple helix’ was the name assigned by the scientific community in the West, to the molecular model proposed for the fibrous protein collagen, by G N Ramachandran’s group at the University of Madras. As mentioned jocularly in a recent retrospective of this work by Sasisekharan and Yathindra [1], the term was possibly coined due to the difficulty of Western scientists in pronouncing the Indian names of Ramachandran and his associates. The unravelling of the precise nature of collagen structure indeed makes for a fascinating story and as succinctly put by Dickerson [2]: “... to trace the evolution of the structure of collagen is to trace the evolution of fibrous protein crystallography in miniature”. This article is a brief review highlighting the pioneering contributions made by G N Ramachandran in elucidating the correct structure of this important molecule and is a sincere tribute by the author to her mentor, doctoral thesis supervisor and major source of inspiration for embarking on a career in biophysics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nickel orthosilicate (Ni2SiO4) has been found to decompose into its component binary oxides in oxygen potential gradients at 1373 K. Nickel oxide was formed at the high oxygen potential boundary, while silica was detected at the low oxygen potential side. Significant porosity and fissures were observed near the Ni2SiO4/SiO2 interface and the SiO2 layer. The critical oxygen partial pressure ratio required for decomposition varied from 1.63 to 2.15 as the oxygen pressures were altered from 1.01 ⊠ 105 to 2.7X 10−4 Pa, well above the dissociation pressure of Ni2SiO4. Platinum markers placed at the boundaries of the Ni2SiO4 sample indicated growth of NiO at the higher oxygen potential boundary, without any apparent transport of material to the low oxygen potential side. However, significant movement of the bulk Ni2SiO4 crystal with respect to the marker was not observed. The decomposition of the silicate occurs due to the unequal rates of transport of Ni and Si. The critical oxygen partial pressure ratio required for decomposition is related both to the thermodynamic stability of Ni2SiO4 with respect to component oxides and the ratio of diffusivities of nickel and silicon. Kinetic decomposition of multicomponent oxides, first discovered by Schmalzried, Laqua, and co-workers [H. Schmalzried, W. Laqua, and P. L. Lin, Z. Natur Forsch. Teil A 34, 192 (1979); H. Schmalzried and W. Laqua, Oxid. Met. 15, 339 (1981); W. Laqua and H. Schmalzried, Chemical Metallurgy—A Tribute to Carl Wagner (Metallurgical Society of the AIME, New York, 1981), p. 29] has important consequences for their use at high temperatures and in geochemistry.