98 resultados para Treadmill running

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conformance between the liner and rings of an internal combustion engine depends mainly on their linear wear (dimensional loss) during running-in. Running-in wear studies, using the factorial design of experiments, on a compression ignition engine show that at certain dead centre locations of piston rings the linear wear of the cylinder liner increases with increase in the initial surface roughness of the liner. Rough surfaces wear rapidly without seizure during running-in to promote quick conformance, so an initial surface finish of the liner of 0.8 μm c.l.a. is recommended. The linear wear of the cast iron liner and rings decreases with increasing load but the mass wear increases with increasing load. This discrepancy is due to phase changes in the cast iron accompanied by dimensional growth at higher thermal loads. During running-in the growth of cast iron should be minimised by running the engine at an initial load for which the exhaust gas temperature is approximately 180 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Running fractal dimensions were measured on four channels of an electroencephalogram (EEG) recorded from a normal volunteer. The changes in the background activity due to eye closure were clearly differentiated by the fractal method. The compressed spectral array (CSA) and the running fractal dimensions of the EEG showed corresponding changes with respect to change in the background activity. The fractal method was also successful in detecting low amplitude spikes and the changes in the patterns in the EEG. The effects of different window lengths and shifts on the running fractal dimension have also been studied. The utility of fractal method for EEG data compression is highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational grids are increasingly being used for executing large multi-component scientific applications. The most widely reported advantages of application execution on grids are the performance benefits, in terms of speeds, problem sizes or quality of solutions, due to increased number of processors. We explore the possibility of improved performance on grids without increasing the application’s processor space. For this, we consider grids with multiple batch systems. We explore the challenges involved in and the advantages of executing long-running multi-component applications on multiple batch sites with a popular multi-component climate simulation application, CCSM, as the motivation.We have performed extensive simulation studies to estimate the single and multi-site execution rates of the applications for different system characteristics.Our experiments show that in many cases, multiple batch executions can have better execution rates than a single site execution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational grids with multiple batch systems (batch grids) can be powerful infrastructures for executing long-running multicomponent parallel applications. In this paper, we have constructed a middleware framework for executing such long-running applications spanning multiple submissions to the queues on multiple batch systems. We have used our framework for execution of a foremost long-running multi-component application for climate modeling, the Community Climate System Model (CCSM). Our framework coordinates the distribution, execution, migration and restart of the components of CCSM on the multiple queues where the component jobs of the different queues can have different queue waiting and startup times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present talk, we will discuss a six dimensional mass generation for the neutrinos. The SM neutrinos live on a 3-brane and interact via a brane localised mass term with a Weyl singlet neutrino residing in all the six dimensions. We present the physical neutrino mass spectrum and show that the active neutrino mass and the KK masses have a logarithmic cut-off dependence at the tree level. This translates in to a renormalisation group running of n -masses above the KK compactification scale coming from classical effects without any SM particles in the spectrum.This could have effects in neutrinoless double beta decay experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational grids with multiple batch systems (batch grids) can be powerful infrastructures for executing long-running multi-component parallel applications. In this paper, we evaluate the potential improvements in throughput of long-running multi-component applications when the different components of the applications are executed on multiple batch systems of batch grids. We compare the multiple batch executions with executions of the components on a single batch system without increasing the number of processors used for executions. We perform our analysis with a foremost long-running multi-component application for climate modeling, the Community Climate System Model (CCSM). We have built a robust simulator that models the characteristics of both the multi-component application and the batch systems. By conducting large number of simulations with different workload characteristics and queuing policies of the systems, processor allocations to components of the application, distributions of the components to the batch systems and inter-cluster bandwidths, we show that multiple batch executions lead to 55% average increase in throughput over single batch executions for long-running CCSM. We also conducted real experiments with a practical middleware infrastructure and showed that multi-site executions lead to effective utilization of batch systems for executions of CCSM and give higher simulation throughput than single-site executions. Copyright (c) 2011 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High end network security applications demand high speed operation and large rule set support. Packet classification is the core functionality that demands high throughput in such applications. This paper proposes a packet classification architecture to meet such high throughput. We have implemented a Firewall with this architecture in reconflgurable hardware. We propose an extension to Distributed Crossproducting of Field Labels (DCFL) technique to achieve scalable and high performance architecture. The implemented Firewall takes advantage of inherent structure and redundancy of rule set by using our DCFL Extended (DCFLE) algorithm. The use of DCFLE algorithm results in both speed and area improvement when it is implemented in hardware. Although we restrict ourselves to standard 5-tuple matching, the architecture supports additional fields. High throughput classification invariably uses Ternary Content Addressable Memory (TCAM) for prefix matching, though TCAM fares poorly in terms of area and power efficiency. Use of TCAM for port range matching is expensive, as the range to prefix conversion results in large number of prefixes leading to storage inefficiency. Extended TCAM (ETCAM) is fast and the most storage efficient solution for range matching. We present for the first time a reconfigurable hardware implementation of ETCAM. We have implemented our Firewall as an embedded system on Virtex-II Pro FPGA based platform, running Linux with the packet classification in hardware. The Firewall was tested in real time with 1 Gbps Ethernet link and 128 sample rules. The packet classification hardware uses a quarter of logic resources and slightly over one third of memory resources of XC2VP30 FPGA. It achieves a maximum classification throughput of 50 million packet/s corresponding to 16 Gbps link rate for the worst case packet size. The Firewall rule update involves only memory re-initialization in software without any hardware change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the title compound, C12H10N2O, the dihedral angle between the phenyl and pyridine rings is 64.81 (1)degrees. Intermolecular N-H center dot center dot center dot O hydrogen bonds connect the molecules into chains running along the b axis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High end network security applications demand high speed operation and large rule set support. Packet classification is the core functionality that demands high throughput in such applications. This paper proposes a packet classification architecture to meet such high throughput. We have Implemented a Firewall with this architecture in reconfigurable hardware. We propose an extension to Distributed Crossproducting of Field Labels (DCFL) technique to achieve scalable and high performance architecture. The implemented Firewall takes advantage of inherent structure and redundancy of rule set by using, our DCFL Extended (DCFLE) algorithm. The use of DCFLE algorithm results In both speed and area Improvement when It is Implemented in hardware. Although we restrict ourselves to standard 5-tuple matching, the architecture supports additional fields.High throughput classification Invariably uses Ternary Content Addressable Memory (TCAM) for prefix matching, though TCAM fares poorly In terms of area and power efficiency. Use of TCAM for port range matching is expensive, as the range to prefix conversion results in large number of prefixes leading to storage inefficiency. Extended TCAM (ETCAM) is fast and the most storage efficient solution for range matching. We present for the first time a reconfigurable hardware Implementation of ETCAM. We have implemented our Firewall as an embedded system on Virtex-II Pro FPGA based platform, running Linux with the packet classification in hardware. The Firewall was tested in real time with 1 Gbps Ethernet link and 128 sample rules. The packet classification hardware uses a quarter of logic resources and slightly over one third of memory resources of XC2VP30 FPGA. It achieves a maximum classification throughput of 50 million packet/s corresponding to 16 Gbps link rate for file worst case packet size. The Firewall rule update Involves only memory re-initialiization in software without any hardware change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a fast algorithm for computing a Gomory-Hu tree or cut tree for an unweighted undirected graph G = (V, E). The expected running time of our algorithm is (O) over tilde (mc) where vertical bar E vertical bar = m and c is the maximum u-v edge connectivity, where u, v is an element of V. When the input graph is also simple (i.e., it has no parallel edges), then the u-v edge connectivity for each pair of vertices u and v is at most n - 1; so the expected run-ning time of our algorithm for simple unweighted graphs is (O) over tilde (mn). All the algorithms currently known for constructing a Gomory-Hu tree [8, 9] use n - 1 minimum s-t cut (i.e., max flow) subroutines. This in conjunction with the current fastest (O) over tilde (n(20/9)) max flow algorithm due to Karger and Levine[11] yields the current best running time of (O) over tilde (n(20/9)n) for Gomory-Hu tree construction on simple unweighted graphs with m edges and n vertices. Thus we present the first (O) over tilde (mn) algorithm for constructing a Gomory-Hu tree for simple unweighted graphs. We do not use a max flow subroutine here; we present an efficient tree packing algorithm for computing Steiner edge connectivity and use this algorithm as our main subroutine. The advantage in using a tree packing algorithm for constructing a Gomory-Hu tree is that the work done in computing a minimum Steiner cut for a Steiner set S subset of V can be reused for computing a minimum Steiner cut for certain Steiner sets S' subset of S.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Friction characteristics of journal bearings made from cast graphic aluminum particulate composite alloy were determined under mixed lubrication and compared with those of the base alloy (without graphite) and leaded phosphor bronze. All three materials ran without seizure while the performance of the particulate composite and leaded phosphor bronze improved with running. Temperature rise in the journal bearing under mixed/boundary lubrication was also measured. It was found that with 0.3D/1000 to 1.5D/1000 clearance and a low lubrication rate (typical value for a bearing of diameter 35 mm × length 35 mm is 80 mm3/min) and at a PV value of 73 × 106 Nm m−2 min−1 graphitic aluminium alloy journal bearings operate satisfactorily without seizure and excessive temperature rise. In comparison, the bronze bearings, with all the other parameters remaining the same, could not run without excessive temperature rise at clearances below D/1000 at lubrication rates lower than 200 mm3/min

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data-flow analysis is an integral part of any aggressive optimizing compiler. We propose a framework for improving the precision of data-flow analysis in the presence of complex control-flow. W initially perform data-flow analysis to determine those control-flow merges which cause the loss in data-flow analysis precision. The control-flow graph of the program is then restructured such that performing data-flow analysis on the resulting restructured graph gives more precise results. The proposed framework is both simple, involving the familiar notion of product automata, and also general, since it is applicable to any forward data-flow analysis. Apart from proving that our restructuring process is correct, we also show that restructuring is effective in that it necessarily leads to more optimization opportunities. Furthermore, the framework handles the trade-off between the increase in data-flow precision and the code size increase inherent in the restructuring. We show that determining an optimal restructuring is NP-hard, and propose and evaluate a greedy strategy. The framework has been implemented in the Scale research compiler, and instantiated for the specific problem of Constant Propagation. On the SPECINT 2000 benchmark suite we observe an average speedup of 4% in the running times over Wegman-Zadeck conditional constant propagation algorithm and 2% over a purely path profile guided approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Al-Si-graphite particle composite alloy pistons containing different percentages of about 80 μm uncoated graphite particles were successfully cast by foundry techniques. Tests with a 5 hp single-cylinder diesel engine show that Al-Si-graphite particle composite pistons can withstand an endurance test of 500 h without any apparent deterioration and do not seize during the running-in period. The use of the Al-Si-3% graphite particle composite piston also results in (a) up to 3% reduction in the specific fuel consumption, (b) considerable reduction in the wear of all four piston rings, (c) a reduction in piston wear, (d) a 9% reduction in the frictional horsepower losses of the engine as determined by the motoring test and (e) a slight increase in the exhaust gas temperature. These reductions (a)–(d) appear to be due to increased lubrication from the graphite particles which are smeared on the bearing surface, the higher damping capacity of the composite pistons and the reduced coefficient of thermal expansion of the composite pistons. Preliminary results indicate that aluminum-graphite particle composite alloy is a promising material for automotive pistons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In developing countries high rate of growth in demand of electric energy is felt, and so the addition of new generating units becomes necessary. In deregulated power systems private generating stations are encouraged to add new generations. Finding the appropriate location of new generator to be installed can be obtained by running repeated power flows, carrying system studies like analyzing the voltage profile, voltage stability, loss analysis etc. In this paper a new methodology is proposed which will mainly consider the existing network topology into account. A concept of T-index is introduced in this paper, which considers the electrical distances between generator and load nodes.This index is used for ranking significant new generation expansion locations and also indicates the amount of permissible generations that can be installed at these new locations. This concept facilitates for the medium and long term planning of power generation expansions within the available transmission corridors. Studies carried out on a sample 7-bus system, EHV equivalent 24-bus system and IEEE 39 bus system are presented for illustration purpose.