63 resultados para Transmission line protection
em Indian Institute of Science - Bangalore - Índia
Resumo:
The development of algorithms, based on Haar functions, for extracting the desired frequency components from transient power-system relaying signals is presented. The applications of these algorithms to impedance detection in transmission line protection and to harmonic restraint in transformer differential protection are discussed. For transmission line protection, three modes of application of the Haar algorithms are described: a full-cycle window algorithm, an approximate full-cycle window algorithm, and a half-cycle window algorithm. For power transformer differential protection, the combined second and fifth harmonic magnitude of the differential current is compared with that of fundamental to arrive at a trip decision. The proposed line protection algorithms are evaluated, under different fault conditions, using realistic relaying signals obtained from transient analysis conducted on a model 400 kV, 3-phase system. The transformer differential protection algorithms are also evaluated using a variety of simulated inrush and internal fault signals.
Resumo:
This paper presents a fast and accurate relaying technique for a long 765kv UHV transmission line based on support vector machine. For a long EHV/UHV transmission line with large distributed capacitance, a traditional distance relay which uses a lumped parameter model of the transmission line can cause malfunction of the relay. With a frequency of 1kHz, 1/4th cycle of instantaneous values of currents and voltages of all phases at the relying end are fed to Support Vector Machine(SVM). The SVM detects fault type accurately using 3 milliseconds of post-fault data and reduces the fault clearing time which improves the system stability and power transfer capability. The performance of relaying scheme has been checked with a typical 765kV Indian transmission System which is simulated using the Electromagnetic Transients Program(EMTP) developed by authors in which the distributed parameter line model is used. More than 15,000 different short circuit fault cases are simulated by varying fault location, fault impedance, fault incidence angle and fault type to train the SVM for high speed accurate relaying. Simulation studies have shown that the proposed relay provides fast and accurate protection irrespective of fault location, fault impedance, incidence time of fault and fault type. And also the proposed scheme can be used as augmentation for the existing relaying, particularly for Zone-2, Zone-3 protection.
Resumo:
UHV power transmission lines have high probability of shielding failure due to their higher height, larger exposure area and high operating voltage. Lightning upward leader inception and propagation is an integral part of lightning shielding failure analysis and need to be studied in detail. In this paper a model for lightning attachment has been proposed based on the present knowledge of lightning physics. Leader inception is modeled based on the corona charge present near the conductor region and the propagation model is based on the correlation between the lightning induced voltage on the conductor and the drop along the upward leader channel. The inception model developed is compared with previous inception models and the results obtained using the present and previous models are comparable. Lightning striking distances (final jump) for various return stroke current were computed for different conductor heights. The computed striking distance values showed good correlation with the values calculated using the equation proposed by the IEEE working group for the applicable conductor heights of up to 8 m. The model is applied to a 1200 kV AC power transmission line and inception of the upward leader is analyzed for this configuration.
Resumo:
Evaluation and design of shore protection works in the case of tsunamis assumes considerable importance in view of the impact it had in the recent tsunami of 26th December 2004 in India and other countries in Asia. The fact that there are no proper guidelines have made in the matters worse and resulted in the magnitude of damage that occurred. Survey of the damages indicated that the scour as a result of high velocities is one of the prime reasons for damages in the case of simple structures. It is revealed that sea walls in some cases have been helpful to minimize the damages. The objective of this paper is to suggest that design of shore line protection systems using expected wave heights that get generated and use of flexible systems such as geocells is likely to give a better protection. The protection systems can be designed to withstand the wave forces that corresponding to different probabilities of incidence. A design approach of geocells protection system is suggested and illustrated with reference to the data of wave heights in the east coast of India.
Resumo:
A novel method to account for the transmission line resistances in structure preserving energy functions (SPEF) is presented in this paper. The method exploits the equivalence of a lossy network having the same conductance to susceptance ratio for all its elements to a lossless network with a new set of power injections. The system equations and the energy function are developed using centre of inertia (COI) variables and the loads are modelled as arbitrary functions of respective bus voltages. The application of SPEF to direct transient stability evaluation is presented considering a realistic power system example.
Resumo:
Transmission of bulk power at high voltages over very long distances has become very imperative. At present, throughout the globe, this task has been mostly performed by overhead transmission lines. The dual task of mechanically supporting and electrically isolating the live phase conductors from the support tower is performed by string insulators. Whether in clean condition or under polluted conditions, the electrical stress distribution along the insulators governs the possible flashover, which is quite detrimental to the system. However, a reliable data on stress distribution in commonly employed string insulators are rather scarce. Considering this, the present work has made an attempt to study accurately, the field distribution in 220 kV strings for six different types of porcelain/ceramic insulators (Normal and Antifog discs) used for high voltage transmission. The surface charge simulation method is employed for the required field computation. Voltage and electric stress distribution is deduced and compared across different types of discs. A comparison on normalised surface resistance, which is an indicator for the stress concentration under polluted condition, is also attempted.
Resumo:
A new technique is presented using principles of multisignal relaying for the synthesis of a universal-type quadrilateral polar characteristic. The modus operandi consists in the determination of the phase sequence of a set of voltage phasors and the provision of a trip signal for one sequence while blocking for the other. Two versions, one using ferrite-core logic and another using transistor logic, are described in detail. The former version has the merit of simplicity and has the added advantage of not requiring any d.c. supply. The unit is flexible, as it permits independent control of the characteristic along the resistance and reactance axis through suitable adjustments of replica impedance angles. The maximum operating time is about 20ms for all switching angles, and with faults within 95% of the protected section. The maximum transient overreach is about 8%.
Resumo:
In this paper, knowledge-based approach using Support Vector Machines (SVMs) are used for estimating the coordinated zonal settings of a distance relay. The approach depends on the detailed simulation studies of apparent impedance loci as seen by distance relay during disturbance, considering various operating conditions including fault resistance. In a distance relay, the impedance loci given at the relay location is obtained from extensive transient stability studies. SVMs are used as a pattern classifier for obtaining distance relay co-ordination. The scheme utilizes the apparent impedance values observed during a fault as inputs. An improved performance with the use of SVMs, keeping the reach when faced with different fault conditions as well as system power flow changes, are illustrated with an equivalent 265 bus system of a practical Indian Western Grid.
Resumo:
Since the end of second world war, extra high voltage ac transmission has seen its development. The distances between generating and load centres as well as the amount of power to be handled increased tremendously for last 50 years. The highest commercial voltage has increased to 765 kV in India and 1,200 kV in many other countries. The bulk power transmission has been mostly performed by overhead transmission lines. The dual task of mechanically supporting and electrically isolating the live phase conductors from the support tower is performed by string insulators. Whether in clean condition or under polluted conditions, the electrical stress distribution along the insulators governs the possible flashover, which is quite detrimental to the system. Hence the present investigation aims to study accurately, the field distribution for various types of porcelain/ceramic insulators (Normal and Antifog discs) used for high-voltage transmission. The surface charge simulation method is employed for the field computation. A comparison on normalised surface resistance, which is an indicator for the stress concentration under polluted condition, is also attempted.
Resumo:
Reduction of switching surge over voltages allows an economic design of UHV transmission system with reduced insulation. The various means of switching surge over voltage control with pre-insertion resistors/closing resistors, shunt re-actors and controlled switching are illustrated. The switching surge over voltages during the energization of series compensated line are compared with uncompensated line. An Electromagnetic transients program has been developed for studying the effect of various means of control of switching transients during 765kV UHV transmission line energization. This paper presents the studies carried out on switching surges control in 765kV UHV transmission line energization.
Resumo:
A new hybrid comparison technique for transmission line protection, providing polar characteristics marked by sharp discontinuities, has been developed. The comparator models, described in block schematic form, accompany a steady state theoretical basis for comparison. Dynamic test results are indicated for a directional quadrilateral characteristic which closely corresponds to the probable fault area of a transmission line.
Resumo:
This paper presents comparative evaluation of the distance relay characteristics for UHV and EHV transmission lines. Distance protection relay characteristics for the EHV and UHV systems are developed using Electromagnetic Transients (EMT) program. The variation of ideal trip boundaries for both the systems are presented. Unlike the conventional distance protection relay which uses a lumped parameter model, this paper uses the distributed parameter model. The effect of larger shunt susceptance on the trip boundaries is highlighted. Performance of distance relay with ideal trip boundaries for EHV and UHV lines have been tested for various fault locations and fault resistances. Electromagnetic Transients (EMT) program has been developed considering distributed parameter line model for simulating the test systems. The voltage and current phasors are computed from the signals using an improved full cycle DFT algorithm taking 20 samples per cycle. Two practical transmission systems of Indian power grid, namely 765 kV UHV transmission line and SREB 24-bus 400kV EHV system are used to test the performance of the proposed approach.