14 resultados para Translating and interpreting
em Indian Institute of Science - Bangalore - Índia
Resumo:
This study describes the design and implementation of DSS for assessment of Mini, Micro and Small Schemes. The design links a set of modelling, manipulation, spatial analyses and display tools to a structured database that has the facility to store both observed and simulated data. The main hypothesis is that this tool can be used to form a core of practical methodology that will result in more resilient in less time and can be used by decision-making bodies to assess the impacts of various scenarios (e.g.: changes in land use pattern) and to review, cost and benefits of decisions to be made. It also offers means of entering, accessing and interpreting the information for the purpose of sound decision making. Thus, the overall objective of this DSS is the development of set of tools aimed at transforming data into information and aid decisions at different scales.
Resumo:
Wave propagation in fluid?filled/submerged tubes is of interest in large HVAC ducts, and also in understanding and interpreting the experimental results obtained from fluid?filled impedance tubes. Based on the closed form analytical solution of the coupled wave equations, an eigenequation, which is the determinant of an 8×8 matrix, is derived and solved to obtain the axial wave number of the lowest?order longitudinal modes for cylindrical ducts of various diameter and wall thickness. The dispersion behavior of the wave motion is analyzed. It is observed that the larger the diameter of the duct and/or the smaller its wall thickness, the more flexible the impedance tube leading to more coupling between the waves in the elastic media. Also, it is shown that the wave motion in water?filled ducts submerged in water exhibits anomalous dispersion behavior. The axial attenuation characteristics of plane waves along water?filled tubes submerged in water or air are also investigated. Finally, investigations on the sound intensity level difference characteristics of the wall of the air?filled tubes are reported.
Resumo:
A computational scheme for determining the dynamic stiffness coefficients of a linear, inclined, translating and viscously/hysteretically damped cable element is outlined. Also taken into account is the coupling between inplane transverse and longitudinal forms of cable vibration. The scheme is based on conversion of the governing set of quasistatic boundary value problems into a larger equivalent set of initial value problems, which are subsequently numerically integrated in a spatial domain using marching algorithms. Numerical results which bring out the nature of the dynamic stiffness coefficients are presented. A specific example of random vibration analysis of a long span cable subjected to earthquake support motions modeled as vector gaussian random processes is also discussed. The approach presented is versatile and capable of handling many complicating effects in cable dynamics in a unified manner.
Resumo:
Energy plays a prominent role in human society. As a result of technological and industrial development,the demand for energy is rapidly increasing. Existing power sources that are mainly fossil fuel based are leaving an unacceptable legacy of waste and pollution apart from diminishing stock of fuels.Hence, the focus is now shifted to large-scale propagation of renewable energy. Renewable energy technologies are clean sources of energy that have a much lower environmental impact than conventional energy technologies. Solar energy is one such renewable energy. Most renewable energy comes either directly or indirectly from the sun. Estimation of solar energy potential of a region requires detailed solar radiation climatology, and it is necessary to collect extensive radiation data of high accuracy covering all climatic zones of the region. In this regard, a decision support system (DSS)would help in estimating solar energy potential considering the region’s energy requirement.This article explains the design and implementation of DSS for assessment of solar energy. The DSS with executive information systems and reporting tools helps to tap vast data resources and deliver information. The main hypothesis is that this tool can be used to form a core of practical methodology that will result in more resilient in time and can be used by decision-making bodies to assess various scenarios. It also offers means of entering, accessing, and interpreting the information for the purpose of sound decision making.
Resumo:
Expressions for various second-order derivatives of surface tension with respect to composition at infinite dilution in terms of the interaction parameters of the surface and those of the bulk phases of dilute ternary melts have been presented. A method of deducing the parameters, which consists of repeated differentiation of Butler's equations with subsequent application of the appropriate boundary conditions, has been developed. The present investigation calculates the surface tension and adsorption functions of the Fe-S-O melts at 1873 and 1923 K using the modified form of Butler's equations and the derived values for the surface interaction parameters of the system. The calculated values are found to be in good agreement with those of the experimental data of the system. The present analysis indicates that the energetics of the surface phase are considerably different from those of the bulk phase. The present research investigates a critical compositional range beyond which the surface tension increases with temperature. The observed increase in adsorption of sulfur with consequent desorption of oxygen as a function of temperature above the critical compositional range has been ascribed to the increase of activity ratios of oxygen to sulfur in the surface relative to those in the bulk phase of the system.
Resumo:
The optimum values of the solution parameters of a multiparameter integral free-energy function have been determined using experimental data from the Ga-Sb system. The equation is represented as DELTAG(xs) = x(1 - x)[(1 - x)(a1 + a2T + a3T ln T) + x(a4 + a5T + a6T ln T) + x(1 - x)(a7 + a8T + a9xT)].The integral and the corresponding partial form of the free energy function have been found to be of use when interpreting the high temperature thermodynamic data, atomic interactions and phase equilibria in the Ga-Sb system.
Resumo:
In the past two decades RNase A has been the focus of diverse investigations in order to understand the nature of substrate binding and to know the mechanism of enzyme action. Although this system is reasonably well characterized from the view point of some of the binding sites, the details of interactions in the second base binding (B2) site is insufficient. Further, the nature of ligand-protein interaction is elucidated generally by studies on RNase A-substrate analog complexes (mainly with the help of X-ray crystallography). Hence, the details of interactions at atomic level arising due to substrates are inferred indirectly. In the present paper, the dinucleotide substrate UpA is fitted into the active site of RNase A Several possible substrate conformations are investigated and the binding modes have been selected based on Contact Criteria. Thus identified RNase A-UpA complexes are energy minimized in coordinate space and are analysed in terms of conformations, energetics and interactions. The best possible ligand conformations for binding to RNase A are identified by experimentally known interactions and by the energetics. Upon binding of UpA to RNase A the changes associated,with protein back bone, Side chains in general and at the binding sites in particular are described. Further, the detailed interactions between UpA and RNase A are characterized in terms of hydrogen bonds and energetics. An extensive study has helped in interpreting the diverse results obtained from a number of experiments and also in evaluating the extent of changes the protein and the substrate undergo in order to maximize their interactions.
Resumo:
The validity of various qualitative proposals for interpreting and predicting the existence of short contacts between formally non-bonded atoms, as in cyclodisiloxane and related inorganic ring systems, is critically evaluated. The models range from simple considerations of geometric constraints, lone pair repulsions and pi-complex formation to proposals such as the unsupported pi-bond model and the sigma-bridged-pi bond concept. It is pointed out that a unified description based on a combination of closed and open 3-centre 2-electron bonds is possible. The role of hybridisation is emphasized in the short phantom bond computed in an earlier model system. These insights are used to predict structures with exceptionally short Si..Si and B..B phantom bonds. The proposals are confirmed by ab initio calculations.
Resumo:
The modification of the axisymmetric viscous flow due to relative rotation of the disk or fluid by a translation of the boundary is studied. The fluid is taken to be compressible, and the relative rotation and translation velocity of the disk or fluid are time-dependent. The nonlinear partial differential equations governing the motion are solved numerically using an implicit finite difference scheme and Newton's linearisation technique. Numerical solutions are obtained at various non-dimensional times and disk temperatures. The non-symmetric part of the flow (secondary flow) describing the translation effect generates a velocity field at each plane parallel to the disk. The cartesian components of velocity due to secondary flow exhibit oscillations when the motion is due to rotation of the fluid on a translating disk. Increase in translation velocity produces an increment in the radial skin friction but reduces the tangential skin friction.
Resumo:
Music signals comprise of atomic notes drawn from a musical scale. The creation of musical sequences often involves splicing the notes in a constrained way resulting in aesthetically appealing patterns. We develop an approach for music signal representation based on symbolic dynamics by translating the lexicographic rules over a musical scale to constraints on a Markov chain. This source representation is useful for machine based music synthesis, in a way, similar to a musician producing original music. In order to mathematically quantify user listening experience, we study the correlation between the max-entropic rate of a musical scale and the subjective aesthetic component. We present our analysis with examples from the south Indian classical music system.
Resumo:
An analysis of the energy budget for the general case of a body translating in a stationary fluid under the action of an external force is used to define a power loss coefficient. This universal definition of power loss coefficient gives a measure of the energy lost in the wake of the translating body and, in general, is applicable to a variety of flow configurations including active drag reduction, self-propulsion and thrust generation. The utility of the power loss coefficient is demonstrated on a model bluff body flow problem concerning a two-dimensional elliptical cylinder in a uniform cross-flow. The upper and lower boundaries of the elliptic cylinder undergo continuous motion due to a prescribed reflectionally symmetric constant tangential surface velocity. It is shown that a decrease in drag resulting from an increase in the strength of tangential surface velocity leads to an initial reduction and eventual rise in the power loss coefficient. A maximum in energetic efficiency is attained for a drag reducing tangential surface velocity which minimizes the power loss coefficient. The effect of the tangential surface velocity on drag reduction and self-propulsion of both bluff and streamlined bodies is explored through a variation in the thickness ratio (ratio of the minor and major axes) of the elliptical cylinders.
Resumo:
The nonlinear response of a spherical shallow water model to an imposed heat source in the presence of realistic zonal mean zonal winds is investigated numerically. The solutions exhibit elongated, meridionally tilted ridges and troughs indicative of a poleward dispersion of wave activity. As the speed of the jets is increased, the equatorial Kelvin wave is unaffected but the global Rossby wave train coalesces to form a compact, amplified quadrupole structure that bears a striking resemblance to the observed upper level structure of the Madden-Julian oscillation. In the presence of strong subtropical westerly jets, the advection of planetary vorticity by the meridional flow and relative vorticity by the zonally averaged background flow conspire to create the distinctive quadrupole configuration of flanking Rossby waves.
Resumo:
The work reports the preparation of fly ash cenospheres bearing polymer composites, using various polymer matrix materials namely, low density polyethylene, high density polyethylene, polystyrene and polymethylmethacrylate followed by evaluation of properties. The composites are synthesized by including about 18% by weight fly ash cenospheres, into various polymer matrices using brabender facility in the temperature range 120-160 degrees C and at a mixing pressure of 50 MPa. Subsequently, they are cast into sheets through compression moulding. The test samples, made from the sheets, are characterized for physical as well as mechanical properties such as density, hardness, compression strength, impact response, wear and friction. The investigation reveals that the addition of fly ash cenospheres to various polymer matrices results in reduction of density. Further, improvements in the slide wear resistance and decrease in the co-efficient of friction values are noticed. As for interpreting the slide wear data, recourse to examination under scanning electron microscope is made in this paper. As regards the mechanical properties, hardness increases while the compression strength and impact energy decreases with inclusion of cenospheres in all the four types of samples investigated.
Resumo:
Chromatin acetylation is attributed with distinct functional relevance with respect to gene expression in normal and diseased conditions thereby leading to a topical interest in the concept of epigenetic modulators and therapy. We report here the identification and characterization of the acetylation inhibitory potential of an important dietary flavonoid, luteolin. Luteolin was found to inhibit p300 acetyltransferase with competitive binding to the acetyl CoA binding site. Luteolin treatment in a xenografted tumor model of head and neck squamous cell carcinoma (HNSCC), led to a dramatic reduction in tumor growth within 4 weeks corresponding to a decrease in histone acetylation. Cells treated with luteolin exhibit cell cycle arrest and decreased cell migration. Luteolin treatment led to an alteration in gene expression and miRNA profile including up-regulation of p53 induced miR-195/215, let7C; potentially translating into a tumor suppressor function. It also led to down regulation of oncomiRNAs such as miR-135a, thereby reflecting global changes in the microRNA network. Furthermore, a direct correlation between the inhibition of histone acetylation and gene expression was established using chromatin immunoprecipitation on promoters of differentially expressed genes. A network of dysregulated genes and miRNAs was mapped along with the gene ontology categories, and the effects of luteolin were observed to be potentially at multiple levels: at the level of gene expression, miRNA expression and miRNA processing.