43 resultados para Transitional phenomena
em Indian Institute of Science - Bangalore - Índia
Resumo:
Results are reported from an extensive series of experiments on boundary layers in which the location of pressure gradient and transition onset could be varied almost independently, by judicious use of tunnel wall liners and transition-fixing devices. The experiments show that the transition zone is sensitive to the pressure gradient especially near onset, and can be significantly asymmetric; no universal similarity appears valid in general. Observed intermittency distributions cannot be explained on the basis of the hypothesis, often made, that the spot propagates at speeds proportional to the local free-stream velocity but is otherwise unaffected by the pressure gradient.
Resumo:
A unified approach to the problem of electrochemical fluctuations is presented. On the basis of the Langevin procedure, primary noise sources are introduced in the basic phenomenological equations and a discussion of the secondary noise sources arising in the expressions for the power spectra of currents is given.
Resumo:
A discussion of the modelling of the primary and secondary noise sources introduced in the formalism of fluctuation phenomena in a previous report is presented. It is illustrated that the generalisation of the modelling of noise sources in mass transport as given by Tyagai is limited in its applicability. A general procedure for the same is discussed in detail.
Resumo:
Analyses of rocket data at mid- and high-latitude locations over the American Continent show a solar activity-dependent mesospheric heating effect in the 60 to 90 km altitude region. A study of the altitude dependence of the effect shows that the heating and associated processes propagating downwards through the mesosphere do not cause discernible effects, below the 50 to 60 km layer. At Thumba, a significant short-term heating effect attributable to varying solar ultraviolet fluxes causing variable heating of atmospheric ozone is observed. This effect does not seem to propagate downwards into the upper stratosphere.
Resumo:
A simple instrument that can provide a sequence of timed pulses for first initiating a transient process and then enabling sampling and recording periodically during the course of the transient event is described. The time delay between the first of these sampling pulses and the start of the transient event is adjustable. This sequence generator has additional features that make it ideal for use in acquiring the waveforms when a storage oscilloscope is used as the recording device. For avoiding the clutter caused by many waveforms being recorded at the same place on an oscilloscope screen such features as displacements of waveforms in the X and Y directions and trace blanking at places where the waveform is not required, have been incorporated. This sequence generator has been employed to acquire a sequence of Raman scattered radiation signals from an adiabatically expanding saturated vapour probed by a flashlamp-pumped dye laser.
Resumo:
Electrical resistance measurements are reported on the binary liquid mixtures CS2 + CH3CN and CS2 + CH3NO2 with special reference to the critical region. Impurity conduction seems to be the dominant mechanism for charge transport. For the liquid mixture filled at the critical composition, the resistance of the system aboveT c follows the relationR=R c−A(T−T c) b withb=0·6±0·1. BelowT c the conductivities of the two phases obey a relation σ2−σ1=B(T c−T)β with β=0·34±0·02, the exponent of the transport coefficient being the same as the exponent of the order parameter, an equilibrium property.
Resumo:
Numerical and experimental studies on transport phenomena during solidification of an aluminum alloy in the presence of linear electromagnetic stirring are performed. The alloy is electromagnetically stirred to produce semisolid slurry in a cylindrical graphite mould placed in the annulus of a linear electromagnetic stirrer. The mould is cooled at the bottom, such that solidification progresses from the bottom to the top of the cylindrical mould. A numerical model is developed for simulating the transport phenomena associated with the solidification process using a set of single-phase governing equations of mass. momentum, energy. and species conservation. The viscosity variation of the slurry, used in the model, is determined experimentally using a rotary viscometer. The set of governing equations is solved using a pressure-based finite volume technique, along with an enthalpy based phase change algorithm. The numerical study involves prediction of temperature, velocity, species and solid fraction distribution in the mould. Corresponding solidification experiments are performed, with time-temperature history recorded at key locations. The microstructures at various temperature measurement locations in the solidified billet are analyzed. The numerical predictions of temperature variations are in good agreement with experiments, and the predicted flow field evolution correlates well with the microstructures observed at various locations.
Resumo:
Solidification processes are complex in nature, involving multiple phases and several length scales. The properties of solidified products are dictated by the microstructure, the mactostructure, and various defects present in the casting. These, in turn, are governed by the multiphase transport phenomena Occurring at different length scales. In order to control and improve the quality of cast products, it is important to have a thorough understanding of various physical and physicochemical phenomena Occurring at various length scales. preferably through predictive models and controlled experiments. In this context, the modeling of transport phenomena during alloy solidification has evolved over the last few decades due to the complex multiscale nature of the problem. Despite this, a model accounting for all the important length scales directly is computationally prohibitive. Thus, in the past, single-phase continuum models have often been employed with respect to a single length scale to model solidification processing. However, continuous development in understanding the physics of solidification at various length scales oil one hand and the phenomenal growth of computational power oil the other have allowed researchers to use increasingly complex multiphase/multiscale models in recent. times. These models have allowed greater understanding of the coupled micro/macro nature of the process and have made it possible to predict solute segregation and microstructure evolution at different length scales. In this paper, a brief overview of the current status of modeling of convection and macrosegregation in alloy solidification processing is presented.
Resumo:
Arc voltage - current characteristics and threshold current densities occuring during the formation of anode spots in triggered vacuum gaps are reported. Single pulses of 1.65 ms arcing time, which correspond to switching surge currents, are used in the study with copper and aluminum anodes. The threshold values are 1.75 times the values reported earlier using the longer, 8 mis, arcing time. They are found to depend upon the duration of arcing time as well as upon electrode material, surface conditions, electrode size and contact separation. Lateral inhomogenity in the electrode geometry appears to reduce the threshold value by promoting early formation of anode spots.
Resumo:
The coexistence curve of the binary liquid mixture n-heptane-acetic anhydride has been determined by the observation of the transition temperatures of 76 samples over the range of compositions. The functional form of the difference in order parameter, in terms of either the mole fraction or the volume fraction, is consistent with theoretical predictions invoking the concept of universality at critical points. The average value of the order parameter, the diameter of the coexistence curve, shows an anomaly which can be described by either an exponent 1 - a, as predicted by various theories (where a is the critical exponent of the specific heat), or by an exponent 20 (where P is the coexistence curve exponent), as expected when the order parameter used is not the one the diameter of which diverges asymptotically as 1 - a.
Resumo:
Spatial variations in the concentration of a reactive solute in solution are often encountered in a catalyst particle, and this leads to variation in the freezing point of the solution. Depending on the operating temperature, this can result in freezing of the solvent oil a portion of catalyst, rendering that part of the active area ineffective Freezing call occur by formation of a sharp front or it mush that separates the solid and fluid phases. In this paper, we model the extent of reduction in the active area due to freezing. Assuming that the freezing point decreases linearly with solute concentration, conditions for freezing to occur have been derived. At steady state, the ineffective fraction of catalyst pellet is found to be the same irrespective of the mode of freezing. Progress of freezing is determined by both the heat of reaction and the latent heat of fusion Unlike in freezing of alloys where the latter plays a dominant role, the exothermicity of the reaction has a significant effect on freezing in the presence of chemical reactions. A dimensionless group analogous to the Stefan number could be defined to capture the combined effect of both of these.
Resumo:
In the present work, a numerical study is performed to predict the effect of process parameters on transport phenomena during solidification of aluminium alloy A356 in the presence of electromagnetic stirring. A set of single-phase governing equations of mass, momentum, energy and species conservation is used to represent the solidification process and the associated fluid flow, heat and mass transfer. In the model, the electromagnetic forces are incorporated using an analytical solution of Maxwell equation in the momentum conservation equations and the slurry rheology during solidification is represented using an experimentally determined variable viscosity function. Finally, the set of governing equations is solved for various process conditions using a pressure based finite volume technique, along with an enthalpy based phase change algorithm. In present work, the effect of stirring intensity and cooling rate are considered. It is found that increasing stirring intensity results in increase of slurry velocity and corresponding increase in the fraction of solid in the slurry. In addition, the increasing stirring intensity results uniform distribution of species and fraction of solid in the slurry. It is also found from the simulation that the distribution of solid fraction and species is dependent on cooling rate conditions. At low cooling rate, the fragmentation of dendrites from the solid/liquid interface is more.
Resumo:
The influence of 0.03 and 0.08 at. % Ag additions on the clustering of Zn atoms in an Al-4.4 at. % Zn alloy has been studied by resistometry. The effect of quenching and ageing temperatures shows that the ageing-ratio method of calculating the vacancy-solute atom binding energy is not applicable to these alloys. Zone-formation in Al-Zn is unaffected by Ag additions, but the zone-reversion process seems to be influenced. Apparent vacancy-formation energies in the binary and ternary alloys have been used to evaluate the v-Ag atom binding energy as 0.21 eV. It is proposed that, Ag and Zn being similar in size, the relative vacancy binding results from valency effects, and that in Al-Zn-Ag alloys clusters of Zn and Ag may form simultaneously, unaffected by the presence of each other. © 1970 Chapman and Hall Ltd.
Resumo:
The coexistence curve of the carbondisulphide-acetic anhydride system has been measured. The shape of the curve in the critical region (Xc ≈ 70.89 mole % mole % CS2 and Tc ≈ 30.56° C) is determined by the equation |X′ - X″| = Bx (1 - T/Tc)β with the critical indices β = 0.34 ± 0.01 and Bx = 1.7 ± 0.1 over a range 10-6 < (Tc - T)/Tc < 10-2. The values of β and Bx agree with those of other systems and the theoretical predictions of the Ising model.