238 resultados para Top-K
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper, we consider the problem of selecting, for any given positive integer k, the top-k nodes in a social network, based on a certain measure appropriate for the social network. This problem is relevant in many settings such as analysis of co-authorship networks, diffusion of information, viral marketing, etc. However, in most situations, this problem turns out to be NP-hard. The existing approaches for solving this problem are based on approximation algorithms and assume that the objective function is sub-modular. In this paper, we propose a novel and intuitive algorithm based on the Shapley value, for efficiently computing an approximate solution to this problem. Our proposed algorithm does not use the sub-modularity of the underlying objective function and hence it is a general approach. We demonstrate the efficacy of the algorithm using a co-authorship data set from e-print arXiv (www.arxiv.org), having 8361 authors.
Resumo:
Our study concerns an important current problem, that of diffusion of information in social networks. This problem has received significant attention from the Internet research community in the recent times, driven by many potential applications such as viral marketing and sales promotions. In this paper, we focus on the target set selection problem, which involves discovering a small subset of influential players in a given social network, to perform a certain task of information diffusion. The target set selection problem manifests in two forms: 1) top-k nodes problem and 2) lambda-coverage problem. In the top-k nodes problem, we are required to find a set of k key nodes that would maximize the number of nodes being influenced in the network. The lambda-coverage problem is concerned with finding a set of k key nodes having minimal size that can influence a given percentage lambda of the nodes in the entire network. We propose a new way of solving these problems using the concept of Shapley value which is a well known solution concept in cooperative game theory. Our approach leads to algorithms which we call the ShaPley value-based Influential Nodes (SPINs) algorithms for solving the top-k nodes problem and the lambda-coverage problem. We compare the performance of the proposed SPIN algorithms with well known algorithms in the literature. Through extensive experimentation on four synthetically generated random graphs and six real-world data sets (Celegans, Jazz, NIPS coauthorship data set, Netscience data set, High-Energy Physics data set, and Political Books data set), we show that the proposed SPIN approach is more powerful and computationally efficient. Note to Practitioners-In recent times, social networks have received a high level of attention due to their proven ability in improving the performance of web search, recommendations in collaborative filtering systems, spreading a technology in the market using viral marketing techniques, etc. It is well known that the interpersonal relationships (or ties or links) between individuals cause change or improvement in the social system because the decisions made by individuals are influenced heavily by the behavior of their neighbors. An interesting and key problem in social networks is to discover the most influential nodes in the social network which can influence other nodes in the social network in a strong and deep way. This problem is called the target set selection problem and has two variants: 1) the top-k nodes problem, where we are required to identify a set of k influential nodes that maximize the number of nodes being influenced in the network and 2) the lambda-coverage problem which involves finding a set of influential nodes having minimum size that can influence a given percentage lambda of the nodes in the entire network. There are many existing algorithms in the literature for solving these problems. In this paper, we propose a new algorithm which is based on a novel interpretation of information diffusion in a social network as a cooperative game. Using this analogy, we develop an algorithm based on the Shapley value of the underlying cooperative game. The proposed algorithm outperforms the existing algorithms in terms of generality or computational complexity or both. Our results are validated through extensive experimentation on both synthetically generated and real-world data sets.
Resumo:
Increasing network lifetime is important in wireless sensor/ad-hoc networks. In this paper, we are concerned with algorithms to increase network lifetime and amount of data delivered during the lifetime by deploying multiple mobile base stations in the sensor network field. Specifically, we allow multiple mobile base stations to be deployed along the periphery of the sensor network field and develop algorithms to dynamically choose the locations of these base stations so as to improve network lifetime. We propose energy efficient low-complexity algorithms to determine the locations of the base stations; they include i) Top-K-max algorithm, ii) maximizing the minimum residual energy (Max-Min-RE) algorithm, and iii) minimizing the residual energy difference (MinDiff-RE) algorithm. We show that the proposed base stations placement algorithms provide increased network lifetimes and amount of data delivered during the network lifetime compared to single base station scenario as well as multiple static base stations scenario, and close to those obtained by solving an integer linear program (ILP) to determine the locations of the mobile base stations. We also investigate the lifetime gain when an energy aware routing protocol is employed along with multiple base stations.
Resumo:
We investigate the problem of influence limitation in the presence of competing campaigns in a social network. Given a negative campaign which starts propagating from a specified source and a positive/counter campaign that is initiated, after a certain time delay, to limit the the influence or spread of misinformation by the negative campaign, we are interested in finding the top k influential nodes at which the positive campaign may be triggered. This problem has numerous applications in situations such as limiting the propagation of rumor, arresting the spread of virus through inoculation, initiating a counter-campaign against malicious propaganda, etc. The influence function for the generic influence limitation problem is non-submodular. Restricted versions of the influence limitation problem, reported in the literature, assume submodularity of the influence function and do not capture the problem in a realistic setting. In this paper, we propose a novel computational approach for the influence limitation problem based on Shapley value, a solution concept in cooperative game theory. Our approach works equally effectively for both submodular and non-submodular influence functions. Experiments on standard real world social network datasets reveal that the proposed approach outperforms existing heuristics in the literature. As a non-trivial extension, we also address the problem of influence limitation in the presence of multiple competing campaigns.
Resumo:
We demonstrate a top-gated field effect transistor made of a reduced graphene oxide (RGO) monolayer (graphene) by dielectrophoresis. The Raman spectrum of RGO flakes of typical size of 5 mu m x 5 mu m shows a single 2D band at 2687 cm(-1), characteristic of single-layer graphene.The two-probe current-voltage measurements of RGO flakes, deposited in between the patterned electrodes with a gap of 2.5 mu m using ac dielectrophoresis, show ohmic behavior with a resistance of similar to 37 k Omega. The temperature dependence of the resistance (R) of RGO measured between 305 K and 393 K yields a temperature coefficient of resistance [dR/dT]/R similar to -9.5 x 10(-4)/K, the same as that of mechanically exfoliated single-layer graphene. The field-effect transistor action was obtained by electrochemical top-gating using a solid polymer electrolyte (PEO + LiClO4) and Pt wire. The ambipolar nature of graphene flakes is observed up to a doping level of similar to 6 x 10(12)/cm(2) and carrier mobility of similar to 50 cm(2)/V s. The source-drain current characteristics show a tendency of current saturation at high source-drain voltage which is analyzed quantitatively by a diffusive transport model. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We investigate the effects of new physics scenarios containing a high mass vector resonance on top pair production at the LHC, using the polarization of the produced top. In particular we use kinematic distributions of the secondary lepton coming from top decay, which depends on top polarization, as it has been shown that the angular distribution of the decay lepton is insensitive to the anomalous tbW vertex and hence is a pure probe of new physics in top quark production. Spin sensitive variables involving the decay lepton are used to reconstruct the top polarization. Some sensitivity is found for the new couplings of the top.
Resumo:
In this note we demonstrate the use of top polarization in the study of t (t) over bar resonances at the LHC, in the possible case where the dynamics implies a non-zero top polarization. As a probe of top polarization we construct an asymmetry in the decay-lepton azimuthal angle distribution (corresponding to the sign of cos phi(l)) in the laboratory. The asymmetry is non-vanishing even for a symmetric collider like the LHC, where a positive z axis is not uniquely defined. The angular distribution of the leptons has the advantage of being a faithful top-spin analyzer, unaffected by possible anomalous tbW couplings, to linear order. We study, for purposes of demonstration, the case of a Z' as might exist in the little Higgs models. We identify kinematic cuts which ensure that our asymmetry reflects the polarization in sign and magnitude. We investigate possibilities at the LHC with two energy options: root s = 14TeV and root s = 7TeV, as well as at the Tevatron. At the LHC the model predicts net top quark polarization of the order of a few per cent for M-Z' similar or equal to 1200GeV, being as high as 10% for a smaller mass of the Z' of 700GeV and for the largest allowed coupling in the model, the values being higher for the 7TeV option. These polarizations translate to a deviation from the standard-model value of azimuthal asymmetry of up to about 4% (7%) for 14 (7) TeV LHC, whereas for the Tevatron, values as high as 12% are attained. For the 14TeV LHC with an integrated luminosity of 10 fb(-1), these numbers translate into a 3 sigma sensitivity over a large part of the range 500 less than or similar to M-Z' less than or similar to 1500GeV.
Resumo:
The variation of the drag force near the top portions of tall stacks with and without external landing platforms, and with the exit open and closed, has been examined by model studies in a wind tunnel at Reynolds numbers of about 10(5). Pressure measurements on three models of different height to diameter ratios have been supplemented by flow visualisation studies. Observations confirm that when there is no platform, significant load enhancement over the top three to four diameters occurs, due to the high suction caused by the sharp separation of the flow over the top from the rim, in the aft regions of the stack. The enhanced loading is found to be greater if the exit is closed. A platform at the top, of less than twice the exit diameter, further increases the drag force near the top, but a still larger platform at the top, of about three times the exit diameter, decreases the drag force to values less than those much further below, effectively nullifying the enhanced drag force. It was found that such a reduction of the enhanced drag force in the top regions can also be achieved by a smaller platform of 1.1 to 1.3 times the local diameter, located at about three to five diameters below the top.
Resumo:
The interaction between laminar Rayleigh-Benard convection and directional solidification is studied for the case of an eutectic solution kept in a rectangular cavity cooled from the top. Experiments and numerical simulations are carried out using an NH4Cl-H2O solution as the model fluid. The flow is visualized using a sheet of laser light scattered by neutrally buoyant, hollow-glass spheres seeded in the fluid. The numerical modeling is performed using a pressure-based finite-volume method according to the SIMPLER algorithm. The present configuration enables us to visualize flow vortices in the presence of a continuously evolving solid/liquid interface. Clear visualization of the Rayleigh-Benard convective cells and their interaction with the solidification front are obtained. It is observed that the convective cells are characterized by zones of up-flow and down-flow, resulting in the development of a nonplanar interface. Because of the continuous advancement of the solid/liquid interface, the effective liquid height of the cavity keeps decreasing. Once the height of the fluid layer falls below a critical value, the convective cells become weaker and eventually die out, leading to the growth of a planar solidification front. Results of flow visualization and temperature measurement are compared with those from the numerical simulation, and a good agreement is found.
Resumo:
This paper deals with the characterisation of tar from two configurations of bioresidue thermochemical conversion reactors designed for producer gas based power generation systems. The pulverised fuel reactor is a cyclone system (R1) and the solid bioresidue reactor (denoted R2) is an open top twin air entry system both at 75-90 kg/h capacity (to generate electricity similar to 100 kVA). The reactor, R2, has undergone rigorous test in a major Indo-Swiss programme for the tar quantity at various conditions. The former is a recent technology development. Tars collected from these systems by a standard tar collection apparatus at the laboratory at Indian Institute of Science have been analysed at the Royal Institute of Technology (KTH), Sweden. The results of these analyses show that these thermochemical conversion reactors behave differently from the earlier reactors reported in literature in so far as tar generation is concerned. The extent of tar in hot gas is about 700-800 ppm for R1 and 70-100 ppm for R2. The amounts of the major compounds - naphthalene and phenol-are much lower that what is generally understood to happen in the gasifiers in Europe. It is suggested that the longer residence times at high temperatures allowed for in these reactors is responsible for this behavior. It is concluded the new generation reactor concepts extensively tried out at lower power levels hold promise for high power atmospheric gasification systems for woody as well as pulverisable bioresidues.
Resumo:
We consider the issue of the top quark Yukawa coupling measurement in a model-independent and general case with the inclusion of CP violation in the coupling. Arguably the best process to study this coupling is the associated production of the Higgs boson along with a t (t) over bar pair in a machine like the International Linear Collider (ILC). While detailed analyses of the sensitivity of the measurement-assuming a Standard Model (SM)-like coupling is available in the context of the ILC-conclude that the coupling could be pinned down to about a 10% level with modest luminosity, our investigations show that the scenario could be different in the case of a more general coupling. The modified Lorentz structure resulting in a changed functional dependence of the cross section on the coupling, along with the difference in the cross section itself leads to considerable deviation in the sensitivity. Our studies of the ILC with center-of-mass energies of 500 GeV, 800 GeV, and 1000 GeV show that moderate CP mixing in the Higgs sector could change the sensitivity to about 20%, while it could be worsened to 75% in cases which could accommodate more dramatic changes in the coupling. Detailed considerations of the decay distributions point to a need for a relook at the analysis strategy followed for the case of the SM, such as for a model-independent analysis of the top quark Yukawa coupling measurement. This study strongly suggests that a joint analysis of the CP properties and the Yukawa coupling measurement would be the way forward at the ILC and that caution must be exercised in the measurement of the Yukawa couplings and the conclusions drawn from it.
Resumo:
Abstract: We report the growth and the electron cyclotron resonance measurements of n-type Si/Si0.62Ge0.38 and Si0.94Ge0.06/Si0.62Ge0.38 modulation-doped heterostructures grown by rapid thermal chemical vapor deposition. The strained Si and Si0.94Ge0.06 channels were grown on relaxed Si0.62Ge0.38 buffer layers, which consist of 0.6 mu m uniform Si0.62Ge0.38 layers and 0.5 mu m compositionally graded relaxed SiGe layers from 0 to 38% Ge. The buffer layers were annealed at 800 degrees C for 1 h to obtain complete relaxation. A 75 Angstrom Si(SiGe) channel with a 100 Angstrom spacer and a 300 Angstrom 2 X 10(19) cm(-3) n-type supply layer was grown on the top of the buffer layers. The cross-sectional transmission electron microscope reveals that the dense dislocation network is confined to the buffer layer, and relatively few dislocations terminate on the surface. The plan-view image indicates the threading dislocation density is about 4 X 10(6) cm(-2). The far-infrared measurements of electron cyclotron resonance were performed at 4 K with the magnetic field of 4-8 T. The effective masses determined from the slope of the center frequency of the absorption peak versus applied magnetic field plot are 0.203m(0) and 0.193m(0) for the two dimensional electron gases in the Si and Si0.94Ge0.06 channels, respectively. The Si effective mass is very close to that of a two dimensional electron gas in an Si MOSFET (0.198m(0)). The electron effective mass of Si0.94Ge0.06 is reported for the first time and is about 5% lower than that of pure Si.
Resumo:
Nine tie-lines between Fe-Ni alloys and FeTiO3-NiTiO3 solid solutions were determined at 1273 K. Samples were equilibrated in evacuated quartz ampoules for periods up to 10 days. Compositions of the alloy and oxide phases at equilibrium were determined by energy-dispersive x-ray spectroscopy. X-ray powder diffraction was used to confirm the results. Attainment of equilibrium was verified by the conventional tie-line rotation technique and by thermodynamic analysis of the results. The tie-lines are skewed toward the FeTiO3 corner. From the tie-line data and activities in the Fe-Ni alloy phase available in the literature, activities of FeTiO3 and NiTiO3 in the ilmenite solid solution were derived using the modified Gibbs-Duhem technique of Jacob and Jeffes [K.T. Jacob and J.H.E. Jeffes, An Improved Method for Calculating Activities from Distribution Equilibria, High Temp. High Press., 1972, 4, p 177-182]. The components of the oxide solid solution exhibit moderate positive deviations from Raoult's law. Within experimental error, excess Gibbs energy of mixing for the FeTiO3-NiTiO3 solid solution at 1273 K is a symmetric function of composition and can be represented as: Delta G(E) = 8590 (+/- 200) X-FeTiO3 X-NiTiO3 J/mol Full spectrum of tie-lines and oxygen potentials for the three-phase equilibrium involving Fe-Ni alloys, FeTiO3-NiTiO3 solid solutions, and TiO2 at 1273 K were computed using results obtained in this study and data available in the literature.
Resumo:
Low-temperature electroluminescence (EL) is observed in n-type modulation-doped AlGaAs/InGaAs/GaAs quantum well samples by applying a positive voltage between the semitransparent Au gate and alloyed Au–Ge Ohmic contacts made on the top surface of the samples. We attribute impact ionization in the InGaAs QW to the observed EL from the samples. A redshift in the EL spectra is observed with increasing gate bias. The observed redshift in the EL spectra is attributed to the band gap renormalization due to many-body effects and quantum-confined Stark effect.
Resumo:
Aerosols from biomass burning can alter the radiative balance of the Earth by reflecting and absorbing solar radiation(1). Whether aerosols exert a net cooling or a net warming effect will depend on the aerosol type and the albedo of the underlying surface(2). Here, we use a satellite-based approach to quantify the direct, top-of-atmosphere radiative effect of aerosol layers advected over the partly cloudy boundary layer of the southeastern Atlantic Ocean during July-October of 2006 and 2007. We show that the warming effect of aerosols increases with underlying cloud coverage. This relationship is nearly linear, making it possible to define a critical cloud fraction at which the aerosols switch from exerting a net cooling to a net warming effect. For this region and time period, the critical cloud fraction is about 0.4, and is strongly sensitive to the amount of solar radiation the aerosols absorb and the albedo of the underlying clouds. We estimate that the regional-mean warming effect of aerosols is three times higher when large-scale spatial covariation between cloud cover and aerosols is taken into account. These results demonstrate the importance of cloud prediction for the accurate quantification of aerosol direct effects.