129 resultados para Tool wear
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper, pattern classification problem in tool wear monitoring is solved using nature inspired techniques such as Genetic Programming(GP) and Ant-Miner (AM). The main advantage of GP and AM is their ability to learn the underlying data relationships and express them in the form of mathematical equation or simple rules. The extraction of knowledge from the training data set using GP and AM are in the form of Genetic Programming Classifier Expression (GPCE) and rules respectively. The GPCE and AM extracted rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in GP evolved GPCE and AM based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The performance of the data classification using GP and AM is as good as the classification accuracy obtained in the earlier study.
Resumo:
In this paper we show the applicability of Ant Colony Optimisation (ACO) techniques for pattern classification problem that arises in tool wear monitoring. In an earlier study, artificial neural networks and genetic programming have been successfully applied to tool wear monitoring problem. ACO is a recent addition to evolutionary computation technique that has gained attention for its ability to extract the underlying data relationships and express them in form of simple rules. Rules are extracted for data classification using training set of data points. These rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in ACO based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The classification accuracy obtained in ACO based approach is as good as obtained in other biologically inspired techniques.
Resumo:
The random direction short Glass Fiber Reinforced Plastics (GFRP) have been prepared by two compression moulding processes, namely the Preform and Sheet Moulding Compound (SMC) processes. Cutting force analysis and surface characterization are conducted on the random direction short GFRPs with varying fiber contents (25 similar to 40%). Edge trimming experiments are preformed using carbide inserts with varing the depth of cut and cutting speed. Machining characteristics of the Preform and SMC processed random direction short GFRPs are evaluated in terms of cutting forces, surface quality, and tool wear. It is found that composite primary processing and fiber contents are major contributing factors influencing the cutting force magnitudes and surface textures. The SMC composites show better surface finish over the Preform composites due to less delamination and fiber pullouts. Moreover, matrix damage and fiber protrusions at the machined edge are reduced by increasing fiber content in the random direction short GFRP composites.
Resumo:
Over the last few decades, Metal Matrix Composites (MMCs) have emerged as a material system offering tremendous potential for future applications. The primary advantages offered by these materials are their improved mechanical properties, particularly in the areas of wear, strength and stiffness. Of the MMCs, Aluminum matrix composites have grown in prominence due to their low density, low melting point and low cost. However, machining these materials remains a challenging task mainly due to the high abrasiveness of the reinforcing phases. Conventional machining processes such as turning, milling or drilling are adopted for machining MMCs. In this article, the existing and ongoing developments in machining MMCs vis-a-vis tool life, tool wear, machinability and understanding chip formation mechanism have been highlighted. Most of the studies discussed in this review will focus on Aluminum matrix composites. Certain areas of machining studies which have hitherto not been investigated have also been detailed.
Resumo:
Fiction stir processing (FSP) is a solid state technique used for material processing. Tool wear and the agglomeration of ceramic particles have been serious issues in FSP of metal matrix composites. In the present study, FSP has been employed to disperse the nanoscale particles of a polymer-derived silicon carbonitride (SiCN) ceramic phase into copper by an in-situ process. SiCN cross linked polymer particles were incorporated using multi-pass ESP into pure copper to form bulk particulate metal matrix composites. The polymer was then converted into ceramic through an in-situ pyrolysis process and dispersed by ESP. Multi-pass processing was carried out to remove porosity from the samples and also for the uniform dispersion of polymer derived ceramic particles. Microstructural observations were carried out using Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission Electron Microscopy (TEM) of the composite. The results indicate a uniform distribution of similar to 100 nm size particles of the ceramic phase in the copper matrix after ESP. The nanocomposite exhibits a five fold increase in microhardness (260HV(100)) which is attributed to the nano scale dispersion of ceramic particles. A mechanism has been proposed for the fracturing of PDC particles during multi pass FSP. (C) 2015 Elsevier Ltd. All rights reserved
Resumo:
Inventory Management (IM) plays a decisive role in the enhancement of efficiency and competitiveness of manufacturing enterprises. Therefore, major manufacturing enterprises are following IM practices as a strategy to improve efficiency and achieve competitiveness. However, the spread of IM culture among Small and Medium Enterprises (SMEs) is limited due to lack of initiation, expertise and financial limitations in developed countries, leave alone developing countries. With this backdrop, this paper makes an attempt to ascertain the role and importance of IM practices and performance of SMEs in the machine tools industry of Bangalore, India. The relationship between inventory management practices and inventory cost are probed based on primary data gathered from 91 SMEs. The paper brings out that formal IM practices have a positive impact on the inventory performance of SMEs.
Resumo:
A defect-selective photothermal imaging system for the diagnostics of optical coatings is demonstrated. The instrument has been optimized for pump and probe parameters, detector performance, and signal processing algorithm. The imager is capable of mapping purely optical or thermal defects efficiently in coatings of low damage threshold and low absorbance. Detailed mapping of minor inhomogeneities at low pump power has been achieved through the simultaneous action of a low-noise fiber optic photothermal beam defection sensor and a common-mode-rejection demodulation (CMRD) technique. The linearity and sensitivity of the sensor have been examined theoretically and experimentally, and the signal to noise ratio improvement factor is found to be about 110 compared to a conventional bicell photodiode. The scanner is so designed that mapping of static or shock sensitive samples is possible. In the case of a sample with absolute absorptance of 3.8 x 10(-4), a change in absorptance of about 0.005 x 10(-4) has been detected without ambiguity, ensuring a contrast parameter of 760. This is about 1085% improvement over the conventional approach containing a bicell photodiode, at the same pump power. The merits of the system have been demonstrated by mapping two intentionally created damage sites in a MgF2 coating on fused silica at different excitation powers. Amplitude and phase maps were recorded for thermally thin and thick cases, and the results are compared to demonstrate a case which, in conventional imaging, would lead to a deceptive conclusion regarding the type and location of the damage. Also, a residual damage profile created by long term irradiation with high pump power density has been depicted.
Resumo:
The present work provides an insight into the dry sliding wear behavior of titanium based on synergy between tribo-oxidation and strain rate response. Pin-on-disc tribometer was used to characterize the friction and wear behavior of titanium pin in sliding contact with polycrystalline alumina disk under ambient and vacuum condition. The sliding speed was varied from 0.01 to 1.4 ms(-1), normal load was varied from 15.3 to 76 N and with a sliding distance of 1500 m. It was seen that dry sliding wear behavior of titanium was governed by combination of tribo-oxidation and strain rate response in near surface region of titanium. Strain rate response of titanium was recorded by conducting uni-axial compression tests at constant true strain rate of 100 s(-1) in the temperature range from 298 to 873 K. Coefficient of friction and wear rate were reduced with increased sliding speed from 0.01 to 1.0 ms(-1). This is attributed to the formation of in situ self lubricating oxide film (TiO) and reduction in the intensity of adiabatic shear band cracking in the near surface region. This trend was confirmed by performing series of dry sliding tests under vacuum condition of 2 x 10(-4) Torr. Characterization tools such as optical microscopy, scanning electron microscopy, and X-ray diffractometer provided evidence of such processes. These experimental findings can be applied to enhance the dry sliding wear behavior of titanium with proper choice of operating conditions such as sliding speed, normal load, and environment.
Resumo:
The relative significance of corrosive and abrasive wear in ore grinding is discussed. Laboratory marked ball wear tests were carried out with magnetic taconite and quartzite under different conditions, namely dry, wet and in the presence of an organic liquid. The effect of different modes of aeration and of pyrrhotite addition on the ball wear using mild steel, high carbon low alloy steel and austenitic stainless steel balls was evaluated. Results indicate that abrasive wear plays a significant role in ore grinding in the absence of sulfides, and rheological properties of the ore slurry influenced such wear. The effect of oxygen on corrosive wear becomes increasingly felt in the presence of a sulfide mineral such as pyrrhotite. Wear characteristics of the three types of ball materials under different grinding conditions are illustrated.
Resumo:
Controversy exists in the published literature as to the effect of silicon content and pressure on the dry sliding wear of Al---Si alloys. The present paper attempts to clarify the question by reporting a statistical analysis of data obtained from factorially designed experiments conducted on a pinon-disc machine in the pressure range 0.105–1.733 MPa and speed range 0.19–0.94 m s−1. Under these conditions it was found that, in the range 4–24 wt.% Si, wear of binary unmodified alloys does not significantly differ between the alloys. However, it is significantly less than that corresponding to an alloy containing no silicon. The effect of pressure on wear rate was found to be linear and monotonie and, over the narrow range of speeds used, the wear rate was found to be unaffected by speed. The coefficient of friction was found to be insensitive to variations in silicon content, pressure and speed.
Resumo:
The effect of corundum particle content on the wear of aluminium was studied. Composites of different corundum contents were tested for their wear characteristics. Hardness and density measurements were made on specimens before and after test. Specimens were examined by scanning electron microscopy in the as-compacted, sintered and worn states. The wear decreased as the oxide content increased, showing an optimum value at a composition range of 25 wt.%–35 wt.% of corundum. The mechanism of reinforcement and its effect on the operative wear mode are discussed.
Resumo:
With many innovations in process technology, forging is establishing itself as a precision manufacturing process: as forging is used to produce complex shapes in difficult materials, it requires dies of complex configuration of high strength and of wear-resistant materials. Extensive research and development work is being undertaken, internationally, to analyse the stresses in forging dies and the flow of material in forged components. Identification of the location, size and shape of dead-metal zones is required for component design. Further, knowledge of the strain distribution in the flowing metal indicates the degree to which the component is being work hardened. Such information is helpful in the selection of process parameters such as dimensional allowances and interface lubrication, as well as in the determination of post-forging operations such as heat treatment and machining. In the presently reported work the effect of aperture width and initial specimen height on the strain distribution in the plane-strain extrusion forging of machined lead billets is observed: the distortion of grids inscribed on the face of the specimen gives the strain distribution. The stress-equilibrium approach is used to optimise a model of flow in extrusion forging, which model is found to be effective in estimating the size of the dead-metal zone. The work carried out so far indicates that the methodology of using the stress-equilibrium approach to develop models of flow in closed-die forging can be a useful tool in component, process and die design.
Resumo:
The effect of corundum particle content on the wear of aluminium was studied. Composites of different corundum contents were tested for their wear characteristics. Hardness and density measurements were made on specimens before and after test. Specimens were examined by scanning electron microscopy in the as-compacted, sintered and worn states. The wear decreased as the oxide content increased, showing an optimum value at a composition range of 25 wt.%–35 wt.% of corundum. The mechanism of reinforcement and its effect on the operative wear mode are discussed.