25 resultados para Time-series Analysis
em Indian Institute of Science - Bangalore - Índia
Resumo:
Time series, from a narrow point of view, is a sequence of observations on a stochastic process made at discrete and equally spaced time intervals. Its future behavior can be predicted by identifying, fitting, and confirming a mathematical model. In this paper, time series analysis is applied to problems concerning runwayinduced vibrations of an aircraft. A simple mathematical model based on this technique is fitted to obtain the impulse response coefficients of an aircraft system considered as a whole for a particular type of operation. Using this model, the output which is the aircraft response can be obtained with lesser computation time for any runway profile as the input.
Resumo:
The correlation dimension D 2 and correlation entropy K 2 are both important quantifiers in nonlinear time series analysis. However, use of D 2 has been more common compared to K 2 as a discriminating measure. One reason for this is that D 2 is a static measure and can be easily evaluated from a time series. However, in many cases, especially those involving coloured noise, K 2 is regarded as a more useful measure. Here we present an efficient algorithmic scheme to compute K 2 directly from a time series data and show that K 2 can be used as a more effective measure compared to D 2 for analysing practical time series involving coloured noise.
Resumo:
Models of river flow time series are essential in efficient management of a river basin. It helps policy makers in developing efficient water utilization strategies to maximize the utility of scarce water resource. Time series analysis has been used extensively for modeling river flow data. The use of machine learning techniques such as support-vector regression and neural network models is gaining increasing popularity. In this paper we compare the performance of these techniques by applying it to a long-term time-series data of the inflows into the Krishnaraja Sagar reservoir (KRS) from three tributaries of the river Cauvery. In this study flow data over a period of 30 years from three different observation points established in upper Cauvery river sub-basin is analyzed to estimate their contribution to KRS. Specifically, ANN model uses a multi-layer feed forward network trained with a back-propagation algorithm and support vector regression with epsilon intensive-loss function is used. Auto-regressive moving average models are also applied to the same data. The performance of different techniques is compared using performance metrics such as root mean squared error (RMSE), correlation, normalized root mean squared error (NRMSE) and Nash-Sutcliffe Efficiency (NSE).
Resumo:
The results are presented of applying multi-time scale analysis using the singular perturbation technique for long time simulation of power system problems. A linear system represented in state-space form can be decoupled into slow and fast subsystems. These subsystems can be simulated with different time steps and then recombined to obtain the system response. Simulation results with a two-time scale analysis of a power system show a large saving in computational costs.
Resumo:
In this paper we propose a novel family of kernels for multivariate time-series classification problems. Each time-series is approximated by a linear combination of piecewise polynomial functions in a Reproducing Kernel Hilbert Space by a novel kernel interpolation technique. Using the associated kernel function a large margin classification formulation is proposed which can discriminate between two classes. The formulation leads to kernels, between two multivariate time-series, which can be efficiently computed. The kernels have been successfully applied to writer independent handwritten character recognition.
Resumo:
A simplified two-temperature model is presented for the vibrational energy levels of the N2O and N2 molecules of an N2O-N2-He gasdynamic laser (GDL), and the governing equations for the unsteady flow of the gas mixture in a convergent-divergent contour nozzle are solved using a time-dependent numerical technique. Final steady-state distributions are obtained for vibrational temperatures, population inversion, and the small-signal laser gain along the nozzle. It is demonstrated that, for plenum temperatures lower than 1200 K, an N2O GDL such as the present is more efficient than a CO2 GDL in identical operating conditions
Resumo:
In this study, we investigated measures of nonlinear dynamics and chaos theory in regards to heart rate variability in 27 normal control subjects in supine and standing postures, and 14 subjects in spontaneous and controlled breathing conditions. We examined minimum embedding dimension (MED), largest Lyapunov exponent (LLE) and measures of nonlinearity (NL) of heart rate time series. MED quantifies the system's complexity, LLE predictability and NL, a measure of deviation from linear processes. There was a significant decrease in complexity (P<0.00001), a decrease in predictability (P<0.00001) and an increase in nonlinearity (P=0.00001) during the change from supine to standing posture. Decrease in MED, and increases in NL score and LLE in standing posture appear to be partly due to an increase in sympathetic activity of the autonomous nervous system in standing posture. An improvement in predictability during controlled breathing appears to be due to the introduction of a periodic component. (C) 2000 published by Elsevier Science B.V.
Evolution in the time series of vortex velocity fluctuations across different regimes of vortex flow
Resumo:
Investigations of vortex velocity fluctuation in time domain have revealed a presence of low frequency velocity fluctuations which evolve with the different driven phases of the vortex state in a single crystal of 2H-NbSe2. The observation of velocity fluctuations with a characteristic low frequency is associated with the onset of nonlinear nature of vortex flow deep in the driven elastic vortex state. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Multisensor recordings are becoming commonplace. When studying functional connectivity between different brain areas using such recordings, one defines regions of interest, and each region of interest is often characterized by a set (block) of time series. Presently, for two such regions, the interdependence is typically computed by estimating the ordinary coherence for each pair of individual time series and then summing or averaging the results over all such pairs of channels (one from block 1 and other from block 2). The aim of this paper is to generalize the concept of coherence so that it can be computed for two blocks of non-overlapping time series. This quantity, called block coherence, is first shown mathematically to have properties similar to that of ordinary coherence, and then applied to analyze local field potential recordings from a monkey performing a visuomotor task. It is found that an increase in block coherence between the channels from V4 region and the channels from prefrontal region in beta band leads to a decrease in response time.
Resumo:
Background: Depression and anxiety have been linked to serious cardiovascular events in patients with preexisting cardiac illness. A decrease in cardiac vagal function as suggested by a decrease in heart rate (HR) variability has been linked to sudden death. Methods: We compared LLE and nonlinearity scores of the unfiltered (UF) and filtered time series (very low, low, and high frequency; VLF, LF and HF) of HR between patients with depression (n = 14) and healthy control subjects (n = 18). Results: We found significantly lower LLE of the unfiltered series in either posture, and HF series in patients with major depression in supine posture (p < .002). LLE (LF/UF), which may indicate relative sympathetic activity was also significantly higher in supine and standing postures in patients (p < .05); LF/HF (LLE) was also higher in patients (p < .05) in either posture. Conclusions: These findings suggest that major depression is associated with decreased cardiac vagal function and a relative increase in sympathetic function, which may be related to the higher risk of cardiovascular mortality, in this group and illustrates the usefulness of nonlinear measures of chaos such as LLE in addition to the commonly used spectral measures.
Resumo:
Real-time kinetics of ligand-ligate interaction has predominantly been studied by either fluorescence or surface plasmon resonance based methods. Almost all such studies are based on association between the ligand and the ligate. This paper reports our analysis of dissociation data of monoclonal antibody-antigen (hCG) system using radio-iodinated hCG as a probe and nitrocellulose as a solid support to immobilize mAb. The data was analyzed quantitatively for a one-step and a two-step model. The data fits well into the two-step model. We also found that a fraction of what is bound is non-dissociable (tight-binding portion (TBP)). The TBP was neither an artifact of immobilization nor does it interfere with analysis. It was present when the reaction was carried out in homogeneous solution in liquid phase. The rate constants obtained from the two methods were comparable. The work reported here shows that real-time kinetics of other ligand-ligate interaction can be studied using nitrocellulose as a solid support. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Tricyclic antidepressants have notable cardiac side effects, and this issue has become important due to the recent reports of increased cardiovascular mortality in patients with depression and anxiety. Several previous studies indicate that serotonin reuptake inhibitors (SRIs) do not appear to have such adverse effects. Apart from the effects of these drugs on routine 12-lead ECG, the effects on beat-to-beat heart rate (HR) and QT interval time series provide more information on the side effects related to cardiac autonomic function. In this study, we evaluated the effects of two antidepressants, nortriptyline (n = 13), a tricyclic, and paroxetine (n = 16), an SRI inhibitor, on HR variability in patients with panic disorder, using a measure of chaos, the largest Lyapunov exponent (LLE) using pre- and posttreatment HR time series. Our results show that nortriptyline is associated with a decrease in LLE of high frequency (HF: 0.15-0.5 Hz) filtered series, which is most likely due to its anticholinergic effect, while paroxetine had no such effect. Paroxetine significantly decreased sympathovagal ratios as measured by a decrease in LLE of LF/HF. These results suggest that paroxetine appears to be safer in regards to cardiovascular effects compared to nortriptyline in this group of patients. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Biomechanical signals due to human movements during exercise are represented in time-frequency domain using Wigner Distribution Function (WDF). Analysis based on WDF reveals instantaneous spectral and power changes during a rhythmic exercise. Investigations were carried out on 11 healthy subjects who performed 5 cycles of sun salutation, with a body-mounted Inertial Measurement Unit (IMU) as a motion sensor. Variance of Instantaneous Frequency (I.F) and Instantaneous Power (I.P) for performance analysis of the subject is estimated using one-way ANOVA model. Results reveal that joint Time-Frequency analysis of biomechanical signals during motion facilitates a better understanding of grace and consistency during rhythmic exercise.