131 resultados para Three-dimensional studies

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hydrothermal reaction of the acetate salts of the rare-earths, 5-aminoisophthalic acid (H(2)AIP), and NaOH at 150 degrees C for 3 days gave rise to a new family of three-dimensional rare-earth aminoisophthalates, M(mu(2)-OH)(C8H5NO4)] M = Y3+ (I), La3+ (II), Pr3+ (III), Nd3+ (IV), Sm3+ (V), Eu3+ (VI), Gd3+ (VII), Dy3+ (VIII), and Er3+ (IX)]. The structures contain M-O(H)-M chains connected by AIP anions. The AIP ions are connected to five metal centers and each metal center is connected with five AIP anions giving rise to a unique (5,5) net. To the best of our knowledge, this is the first observation of a (5,5) net in metal-organic frameworks that involve rare-earth elements. The doping of Eu3+/(3+) ions in place of Y3+/ La3+ in the parent structures gave rise to characteristic metal-centered emission (red = Eu3+, green = Tb3+). Life-time studies indicated that the excited emission states in the case of Eu3+ (4 mol-% doped) are in the range 0.287-0.490 ms and for Tb3+ (4 mol-% doped) are in the range of 1.265-1.702 ms. The Nd3+-containing compound exhibits up-conversion behavior based on two-photon absorption when excited using lambda = 580 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report here on the results of a series of experiments carried out on a turbulent spot in a distorted duct to study the effects of a divergence with straight streamlines preceded by a short stretch of transverse streamline curvature, both in the absence of any pressure gradient. It is found that the distortion produces substantial asymmetry in the spot: the angles at which the spot cuts across the local streamlines are altered dramatically (in contradiction of a hypothesis commonly made in transition zone modelling), and the Tollmien-Schlichting waves that accompany the wing tips of the spot are much stronger on the outside of the bend than on the inside. However there is no strong effect on the internal structure of the spot and the eddies therein, or on such propagation characteristics as overall spread rate and the celerities of the leading and trailing edges. Both lateral streamline curvature and non-homogeneity of the laminar boundary layer into which the spot propagates are shown to be strong factors responsible for the observed asymmetry. It is concluded that these factors produce chiefly a geometric distortion of the coherent structure in the spot, but do not otherwise affect its dynamics in any significant way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct numerical simulation (DNS) results of autoignition in anon-premixed medium under an isotropic, homogeneous, and decaying turbulence are presented. The initial mixture consists of segregated fuel parcels randomly distributed within warm air, and the entire medium is subjected to a three-dimensional turbulence. Chemical kinetics is modeled by a four-step reduced reaction mechanism for autoignition of n-heptane/air mixture. Thus, this work overcomes the principal limitations of a previous contribution of the authors on two-dimensional DNS of autoignition with a one-step reaction model. Specific attention is focused on the differences in the effects of two- and three-dimensional turbulence on autoignition characteristics. The three-dimensional results show that ignition spots are most likely to originate at locations jointly corresponding to the most reactive mixture fraction and low scalar dissipation rate. Further, these ignition spots are found to originate at locations corresponding to the core of local vortical structures, and after ignition, the burning gases move toward the vortex periphery Such a movement is explained as caused by the cyclostrophic imbalance developed when the local gas density is variable. These results lead to the conclusion that the local ignition-zone structure does not conform to the classical stretched flamelet description. Parametric studies show that the ignition delay time decreases with an increase in turbulence intensity. Hence, these three-dimensional simulation results resolve the discrepancy between trends in experimental data and predictions from DNSs of two-dimensional turbulence. This qualitative difference between DNS results from three- and two-dimensional simulations is discussed and attributed to the effect of vortex stretching that is present in the former, but not in the latter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrothermal reaction of Ln(NO3)(3), Ni(NO3)(2), NaN3, and isonicotinic acid (L) yielded two novel 3-D coordination frameworks (1 and 2) of general formula [Ni(2)Ln(L)(5)(N-3)(2)(H2O)(3)] center dot 2H(2)O (Ln = Pr(III) for 1 and Nd(III) for 2), containing Ni-Pr or Ni-Nd hybrid extended three-dimensional networks containing both azido and carboxylate as co-ligands. Both the compounds are found to be isostructural and crystallize in monoclinic system having P2(1)/n space group. Here the lanthanide ions are found to be nonacoordinated. Both bidentate and monodentate modes of binding of the carboxylate with the lanthanides have been observed in the above complexes. Variable temperature magnetic studies of the above two complexes have been investigated in the temperature range 2-300 K which showed dominant antiferromagnetic interaction in both the cases and these experimental results are analyzed with the theoretical models. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel manganese phosphite-oxalate, [C2N2H10][Mn-2(II)(OH2)(2)(HPO3)(2)(C2O4)] has been hydothermally synthesized and its structure determined by single-crystal X-ray diffraction. The structure consists of neutral manganese phosphite layers, [Mn(HPO3)](infinity), formed by MnO6 octahedra and HPO3 units, cross-linked by the oxalate moieties. The organic cations occupy the middle of the 8-membered one dimensional channels. Magnetic studies indicate weak antiferromagnetic interactions between the Mn2+ ions. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrothermal reactions between uranium salts and arsenic pentoxide in the presence of two different amines yielded six new uranium arsenate phases exhibiting open-framework structures, ethylenediamine (en): [C2N2H9]-[(UO2)(ASO(4))] I; [C2N2H10][(UO2)F(HASO(4))]2 center dot 4H(2)O, II; [C2N2H9][U2F5(HASO(4))(2)], III; [C2N2H9][UF2(ASO(4))], IV; diethylenetriamine (DETA), [C4N3H16][U2F3(ASO(4))(2)(HAsO4)] V; and [C4N3H16][U2F6(AsO4)(HAsO4)], VI. The structures were determined using single crystal studies, which revealed two- (I, II, V) and three-dimensional (III, IV, VI) structures for the uranium arsenates. The uranium atom, in these compounds, exhibits considerable variations in the coordination (6 to 9) that appears to have some correlation with the synthetic conditions. The water molecules in [C2N2H10][(UO2)F(HAsO4)](2 center dot)4H(2)O, II, could be reversibly removed, and the dehydrated phase, [C2N2H10][(UO2)F(HAsO4)](2), IIa, was also characterized using single crystal studies. The observation of many mineralogical structures in the present compounds suggests that the hydrothermal method could successfully replicate the geothermal conditions. As part of this study, we have observed autunite, Ca[(UO2)(PO4)](2)(H2O)(11), metavauxite, [Fe(H2O)(6)][Al(OH)(H2O)(PO4)](2), finarite, PbCU(SO4)(OH)(2), and tancoite, LiNa2H[Al(PO4)(2)(OH)], structures. The repeated observation of the secondary building unit, SBU-4, in many of the uranium arsenate structures suggests that these are viable building units. Optical studies on the uranium arsenate compound, [C4N3H16][U2F6(AsO4)(HASO(4))), VI, containing uranium in the +4 oxidation state indicates a blue emission through an upconversion process. The compound also exhibits antiferromagnetic behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new inorganic coordination polymers, {Mn(H2O)(6)]-Mn-2(H2O)(6)](Cu-6(mna)(6)]center dot 6H(2)O}, 1, {Mn-4(OH)(2)(H2O)(10)] (Cu-6(mna)6]center dot 8H(2)O}, 2, and {Mn-2(H2O)(5)]Ag-6(Hmna)(2)(mna)(4)]center dot 20H(2)O}, 3, have been synthesized at room temperature through a sequential crystallization route. In addition, we have also prepared and characterized the molecular precursor Cu-6(Hmna)(6)]. Compounds 1 and 3 have a two-dimensional structure, whereas 2 has a three-dimensional structure. The formation of 2 has been achieved by minor modification in the synthetic composition, suggesting the subtle relationship between the reactant composition and the structure. The hexanudear copper and silver duster cores have Cu center dot center dot center dot Cu and Ag center dot center dot center dot Ag distances close to the sum of the van der Waals radii of Cu1+ and Ag1+, respectively. The connectivity between Cu-6(mna)(6)](6-) cluster units and Mn2+ ions gives rise to a brucite related layer in 1 and a pcu-net in 2. The Ag-6(Hmna)(2)(mna)(4)](4-) cluster in 3, on the other hand, forms a sql-net with Mn2+. Compound 1 exhibits an interesting and reversible hydrochromic behavior, changing from pale yellow to red, on heating at 70 degrees C or treatment under a vacuum. Electron paramagnetic resonance studies indicate no change in the valence states, suggesting the color change could be due to changes in the coordination environment only. The magnetic studies indicate weak antiferromagnetic behavior. Proton conductivity studies indicate moderate proton migrations in 1 and 3. The present study dearly establishes sequential crystallization as an important pathway for the synthesis of heterometallic coordination polymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to its complex honeycomb structure, the numerical modeling of the geocell has always been a big challenge. Generally, the equivalent composite approach is used to model the geocells. In the equivalent composite approach, the geocellsoil composite is treated as the soil layer with improved strength and stiffness values. Though this approach is very simple, it is unrealistic to model the geocells as the soil layer. This paper presents a more realistic approach of modeling the geocells in three-dimensional (3D) framework by considering the actual curvature of the geocell pocket. A square footing resting on geocell reinforced soft clay bed was modeled using the ``fast Lagrangian analysis of continua in 3D'' (FLAC(3D)) finite difference package. Three different material models, namely modified Cam-clay, Mohr-Coulomb, and linear elastic were used to simulate the behaviour of foundation soil, infill soil and the geocell, respectively. It was found that the geocells distribute the load laterally to the wider area below the footing as compared to the unreinforced case. More than 50% reduction in the stress was observed in the clay bed in the presence of geocells. In addition to geocells, two other cases, namely, only geogrid and geocell with additional basal geogrid cases were also simulated. The numerical model was systematically validated with the results of the physical model tests. Using the validated numerical model, parametric studies were conducted to evaluate the influence of various geocell properties on the performance of reinforced clay beds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strontium ions (Sr2+) are known to prevent osteoporosis and also encourage bone formation. Such twin requirements have motivated researchers to develop Sr-substituted biomaterials for orthopaedic applications. The present study demonstrates a new concept of developing Sr-substituted Mg-3(PO4)(2) - based biodegradable scaffolds. In particular, this work reports the fabrication, mechanical properties with an emphasis on strength reliability as well as in vitro degradation of highly biodegradable strontium-incorporated magnesium phosphate cements. These implantable scaffolds were fabricated using three-dimensional powder printing, followed by high temperature sintering and/or chemical conversion, a technique adaptable to develop patient-specific implants. A moderate combination of strength properties of 36.7 MPa (compression), 242 MPa (bending) and 10.7 MPa (tension) were measured. A reasonably modest Weibull modulus of up to 8.8 was recorded after uniaxial compression or diametral tensile tests on 3D printed scaffolds. A comparison among scaffolds with varying compositions or among sintered or chemically hardened scaffolds reveals that the strength reliability is not compromised in Sr-substituted scaffolds compared to baseline Mg-3(PO4)(2). The micro-computed tomography analysis reveals the presence of highly interconnected porous architecture in three-dimension with lognormal pore size distribution having median in the range of 17.74-26.29 mu m for the investigated scaffolds. The results of extensive in vitro ion release study revealed passive degradation with a reduced Mg2+ release and slow but sustained release of Sr2+ from strontium-substituted magnesium phosphate scaffolds. Taken together, the present study unequivocally illustrates that the newly designed Sr-substituted magnesium phosphate scaffolds with good strength reliability could be used for biomedical applications requiring consistent Sr2+-release, while the scaffold degrades in physiological medium. Statement of significance The study investigates the additive manufacturing of scaffolds based on different strontium-substituted magnesium phosphate bone cements by means of three-dimensional powder printing technique (3DPP). Magnesium phosphates were chosen due to their higher biodegradability compared to calcium phosphates, which is due to both a higher solubility as well as the absence of phase changes (to low soluble hydroxyapatite) in vivo. Since strontium ions are known to promote bone formation by stimulating osteoblast growth, we aimed to establish such a highly degradable magnesium phosphate ceramic with an enhanced bioactivity for new bone ingrowth. After post-processing, mechanical strengths of up to 36.7 MPa (compression), 24.2 MPa (bending) and 10.7 MPa (tension) could be achieved. Simultaneously, the failure reliability of those bioceramic implant materials, measured by Weibull modulus calculations, were in the range of 4.3-8.8. Passive dissolution studies in vitro proved an ion release of Mg2+ and PO43- as well as Sr2+, which is fundamental for in vivo degradation and a bone growth promoting effect. In our opinion, this work broadens the range of bioceramic bone replacement materials suitable for additive manufacturing processing. The high biodegradability of MPC ceramics together with the anticipated promoting effect on osseointegration opens up the way for a patient-specific treatment with the prospect of a fast and complete healing of bone fractures. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tethered satellites deployed from the Space Shuttle have been proposed for diverse applications. A funda- mental issue in the utilization of tethers is quick deployment and retrieval of the attached payload. Inordinate librations of the tether during deployment and retrieval is undesirable. The structural damping present in the system is too low to contain the librations. Rupp [1] proposed to control the tether reel located in the parent spacecraft to alter the tension in the tether, which in turn changes the stiffness and the damping of the system. Baker[2] applied the tension control law to a model which included out of plane motion. Modi et al.[3] proposed a control law that included nonlinear feedback of the out-of plane tether angular rate. More recently, nonlinear feedback control laws based on Liapunov functions have been proposed. Two control laws are derived in [4]. The first is based on partial decomposition of the equations of motion and utilization of a two dimensional control law developed in [5]. The other is based on a Liapunov function that takes into consideration out-of-plane motion. It is shown[4] that the control laws are effective when used in conjunction with out-of-plane thrusting. Fujii et al.,[6] used the mission function control approach to study the control law including aerodynamic drag effect explicitly into the control algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady free convection flow in the stagnation-point region of a heated three-dimensional body placed in an ambient fluid is studied under boundary layer approximations. We have considered the case where there is an initial steady state that is perturbed by a step-change in the wall temperature. The non-linear coupled partial differential equations governing the free convection flow are solved numerically using a finite difference scheme. The presented results show the temporal development of the momentum and thermal boundary layer characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady magnetohydrodynamic viscous flow and heat transfer of Newtonian fluids induced by an impulsively stretched plane surface in two lateral directions are studied by using an analytic technique, namely, the homotopy method. The analytic series solution presented here is highly accurate and uniformly valid for all time in the entire region. The effects of the stretching ratio and the magnetic field on the surface shear stresses and heat transfer are studied. The surface shear stresses in x- and y-directions and the surface heat transfer are enchanced by increasing stretching ratio for a fixed value of the magnetic parameter. For a fixed stretching ratio, the surface shear stresses increase with the magnetic parameter, but the heat transfer decreases. The Nusselt number takes longer time to reach the steady state than the skin friction coefficients. There is a smooth transition from the initial unsteady state to the steady state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of massive blowing rates on the steady laminar compressible boundary-layer flow with variable gas properties at a 3-dim. stagnation point (which includes both nodal and saddle points of attachment) has been studied. The equations governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique for nodal points of attachment but employing a parametric differentiation technique instead of quasilinearization for saddle points of attachment. It is found that the effect of massive blowing rates is to move the viscous layer away from the surface. The effect of the variation of the density- viscosity product across the boundary layer is found to be negligible for massive blowing rates but significant for moderate blowing rates. The velocity profiles in the transverse direction for saddle points of attachment in the presence of massive blowing show both the reverse flow as well as velocity overshoot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All the second-order boundary-layer effects have been studied for the steady laminar compressible 3-dimensional stagnation-point flows with variable properties and mass transfer for both saddle and nodal point regions. The governing equations have been solved numerically using an implicit finite-difference scheme. Results for the heat transfer and skin friction have been obtained for several values of the mass-transfer rate, wall temperature, and also for several values of parameters characterizing the nature of stagnation point and variable gas properties. The second-order effects on the heat transfer and skin friction at the wall are found to be significant and at large injection rates, they dominate over the results of the first-order boundary layer, but the effect of large suction is just the opposite. In general, the second-order effects are more pronounced in the saddle-point region than in the nodal-point region. The overall heat-transfer rate for the 3-dimensional flows is found to be more than that of the 2-dimensional flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A semi-similar solution of an unsteady laminar compressible three-dimensional stagnation point boundary layer flow with massive blowing has been obtained when the free stream velocity varies arbitrarily with time. The resulting partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme with a quasi-linearization technique in the nodal point region and an implicit finite-difference scheme with a parametric differentiation technique in the saddle point region. The results have been obtained for two particular unsteady free stream velocity distributions: (i) an accelerating stream and (ii) a fluctuating stream. Results show that the skin-friction and heat-transfer parameters respond significantly to the time dependent arbitrary free stream velocity. Velocity and enthalpy profiles approach their free stream values faster as time increases. There is a reverse flow in the y-wise velocity profile, and overshoot in the x-wise velocity and enthalpy profiles in the saddle point region, which increase as injection and wall temperature increase. Location of the dividing streamline increases as injection increases, but as the wall temperature and time increase, it decreases.