9 resultados para Thorvaldsen, Bertel, 1770-1844.
em Indian Institute of Science - Bangalore - Índia
Resumo:
A relativistic bound-state formalism is used to calculate the branching ratio Γ(V→H+γ)/Γ(V→e+e-) where H is a Higgs scalar and significant relativistic effects have been obtained compared to the nonrelativistic calculation originally due to Wilczek
Resumo:
Unambiguous synthesis of 2-methyl-3-isopropenylanisole (Image ) and 2-isopropenyl-3-methylanisole (Image ) has led to revision, from (Image ) to (Image ), of the structure assigned to a monoterpene phenol ether isolated from
Resumo:
We measure the Cu 2p X-ray photoemission spectrum (XPS) of Sr2CuO3 and analyze it by means of exact diagonalization calculations for (CunO3n)(4n-) clusters. In Sr2CuO3, the intensity ratio of the 3d(y) satellite to the 3d(10)(L) under bar main line is 0.35-0.4, which is evidently smaller than that in the other high-T-c related cuprates. We ascribe it as the smaller charge-transfer energy between the Cu 3d and O 2p. The origin of the broad main-line of Sr2CuO3 is also discussed.
Resumo:
We discuss a recently formulated microscopic theory of the unusual coexistence of spin density waves (SDWs) and charge density waves (CDWs) that has been seen in recent experiments on (TMTTF)2Br, (TMTSF)2PF6 and α-(BEDT-TTF)2MHg(SCN)4.
Resumo:
The oxygen concentration of liquid cobalt in equilibrium with cobalt aluminate and a-alumina has been measured by suction sampling and crucible quenching techniques at temperatures between 1770 and 1975 K. Experiments were made with cobalt of high and low initial oxygen contents, and with and without the addition of cobalt aluminate. The effect of temperature on the equilibrium oxygen content is represented by the equation, log (at.% 0) = -10,4001T(K) + 4.64 (±0.008). The composition of the spinel phase, CoO.(1+x)AI20 3, saturated with alumina, has been determined by electron probe microanalysis. The values of x are 0.22 at 1770 Kand 0.28 at 1975 K. The oxygen potential corresponding to the three-phase equilibrium between cobalt, aluminate and alumina, and the standard Gibbs' energy of formation of nonstoichiometric cobalt aluminate are evaluated by combining the results of this study with recently published data on the activity of oxygen in liquid cobalt. Implications of the present results to aluminium deoxidation of liquid cobalt are discussed.
Resumo:
The Morse-Smale complex is a useful topological data structure for the analysis and visualization of scalar data. This paper describes an algorithm that processes all mesh elements of the domain in parallel to compute the Morse-Smale complex of large two-dimensional data sets at interactive speeds. We employ a reformulation of the Morse-Smale complex using Forman's Discrete Morse Theory and achieve scalability by computing the discrete gradient using local accesses only. We also introduce a novel approach to merge gradient paths that ensures accurate geometry of the computed complex. We demonstrate that our algorithm performs well on both multicore environments and on massively parallel architectures such as the GPU.
Resumo:
Unambiguous synthesis of 2-methyl-3-isopropenylanisole (View the MathML source) and 2-isopropenyl-3-methylanisole (View the MathML source) has led to revision, from (View the MathML source) to (View the MathML source), of the structure assigned to a monoterpene phenol ether isolated from View the MathML source.
Resumo:
The RAD51 paralogs XRCC3 and RAD51C have been implicated in homologous recombination (HR) and DNA damage responses. However, the molecular mechanism(s) by which these paralogs regulate HR and DNA damage signaling remains obscure. Here, we show that an SQ motif serine 225 in XRCC3 is phosphorylated by ATR kinase in an ATM signaling pathway. We find that RAD51C but not XRCC2 is essential for XRCC3 phosphorylation, and this modification follows end resection and is specific to S and G(2) phases. XRCC3 phosphorylation is required for chromatin loading of RAD51 and HR-mediated repair of double-strand breaks (DSBs). Notably, in response to DSBs, XRCC3 participates in the intra-S-phase checkpoint following its phosphorylation and in the G(2)/M checkpoint independently of its phosphorylation. Strikingly, we find that XRCC3 distinctly regulates recovery of stalled and collapsed replication forks such that phosphorylation is required for the HR-mediated recovery of collapsed replication forks but is dispensable for the restart of stalled replication forks. Together, these findings suggest that XRCC3 is a new player in the ATM/ATR-induced DNA damage responses to control checkpoint and HR-mediated repair.
Resumo:
Vaccines provide the most cost effective defense against pathogens. Although vaccines have been designed for a number of viral diseases, a vaccine against HIV-1 still remains elusive. In contrast while there are excellent influenza vaccines, these need to be changed every few years because of antigenic drift and shift The recent discovery of a large number of broadly neutralizing antibodies (bNAbs) and structural characterization of the conserved epitopes targeted by them presents an opportunity for structure based HIV-1 and influenza A vaccine design. We discuss strategies to design immunogens either targeting a particular antigenic region or focusing on native structure stabilization. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody. (C) 2014 Elsevier B.V. All rights reserved.