273 resultados para Thermodynamic equilibrium

em Indian Institute of Science - Bangalore - Índia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The limiting solubility of oxygen in liquid nickel in equilibrium withα-alumina and nickel aluminate has been measured by inert gas fusion analysis of suction samples in the temperature range 1730 to 1975 K. The corresponding oxygen potential has been monitored by a solid electrolyte cell consisting of calcia stabilized zirconia as the electrolyte and Mo + MoO2 as the reference electrode. The results can be summarized by the following equations: log(at. pct O) = \frac - 10,005T + 4.944 ( ±0.015)log(atpctO)=T−10005+4944(0015) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn DmO2 /4.606RT = log P O2 1/2 = \frac - 13,550T + 4.411 ( ±0.009)O24606RT=logPO212=T−13550+4411(0009) From simultaneous measurements of the potential and concentration of oxygen in melts, not in thermodynamic equilibrium with alumina and aluminate phases, information on the composition dependence of the activity coefficient and the standard free energy of solution of oxygen is obtained. For the reaction, $\frac{1}{2} O_2 \to \underset{\raise0.3em\hbox{$Missing close brace ΔG o = -72,930 - 7.11T (±840) J gr.at.–1 = + 0.216 at. pct OlogfO=T−500+0216atpctO where the standard state for dissolved oxygen is that which makes the value of activity equal to the concentration (in at. pct) in the limit as concentration approaches zero. The oxygen solubility in liquid nickel in equilibrium with solid NiO, evaluated from thermodynamic data, is compared with information reported in the literature. Implications of the results to the deoxidation equilibria of aluminum in nickel are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The(1-x) BiFeO3-(x) PbTiO3 solid solution exhibiting a Morphotropic Phase Boundary (MPB) has attracted considerable attention recently because of its unique features such as multiferroic, high Curie point (T-C similar to 700 degrees C) and giant tetragonality (c/a -1 similar to 0.19). Different research groups have reported different composition range of MPB for this system. In this work we have conclusively proved that the wide composition range of MPB reported in the literature is due to kinetic arrest of the metastable rhombohedral phase and that if sufficient temperature and time is allowed the metastable phase disappears. The genuine MPB was found to be x=0.27 for which the tetragonal and the rhombohedral phases are in thermodynamic equilibrium. In-situ high temperature structural study of x=0.27 revealed the sluggish kinetics associated with the temperature induced structural transformation. Neutron powder diffraction study revealed that themagnetic ordering at room temperature occurs in the rhombohedral phase. The magnetic structure was found to be commensurate G-type antiferromagnetic with magnetic moments parallel to the c-direction (of the hexagonal cell). The present study suggests that the equilibrium properties in this solid solution series should be sought for x=0.27.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the context of removal of organic pollutants from wastewater, sonolysis of CCl4 dissolved in water has been widely investigated. These investigations are either completely experimental or correlate data empirically. In this work, a quantitative model is developed to predict the rate of sonolysis of aqueous CCl4. The model considers the isothermal growth and partially adiabatic collapse of cavitation bubbles containing gas and vapor leading to conditions of high temperatures and pressures in them, attainment of thermodynamic equilibrium at the end of collapse, release of bubble contents into the liquid pool, and reactions in the well-mixed pool. The model successfully predicts the extent of degradation of dissolved CCl4, and the influence of various parameters such as initial concentration of CCl4, temperature, and nature of gas atmosphere above the liquid. in particular, it predicts the results of Hua and Hoffmann (Environ. Sci Technol, 1996, 30, 864-871), who found that degradation is first order with CCl4 and that Argon as well as Ar-O-3 atmospheres give the same results. The framework of the model is capable of quantitatively describing the degradation of many dissolved organics by considering all the involved species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrogen plasma can be used for deoxidation of functional materials containing reactive metals in both bulk and thin film forms. Since the different species in the plasma are not in thermodynamic equilibrium, application of classical thermodynamics to the analysis of such a system is associated with some difficulties. While global equilibrium approaches have been tried, with and without additional approximations or constraints, there is some ambiguity in the results obtained. Presented in this article is the application of a local equilibrium concept to assess the thermodynamic limit of the reaction of each species present in the gas with oxides or oxygen dissolved in metals. Each reaction results in a different pal tial pressure of H2O. Because of the higher reactivity of the dissociated and ionized species and the larger thermodynamic driving force for reactions involving these species, they act as powerful reducing agents. It is necessary to remove the products of reaction from the plasma to prevent back reaction and gradual approach to global equilibrium. A quantitative description using the framework of the Ellingham-Richardson-Jeffes diagrams is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultrasonication of aqueous KI solution is known to yield I2 due to reaction of iodide ions with hydroxyl radicals, which in turn are generated due to cavitation. Based on this conceptual framework, a model has been developed to predict the rate of iodine formation for KI solutions of various concentrations under different gas atmospheres. The model follows the growth and collapse of a gas—vapour cavity using the Rayleigh—Plesset bubble dynamics equation. The bubble is assumed to behave isothermally during its growth phase and a part of the collapse phase. Thereafter it is assumed to collapse adiabatically, yielding high temperatures and pressures. Thermodynamic equilibrium is assumed in the bubble at the end of collapse phase. The contents of the bubble are assumed to mix with the liquid, and the reactor contents are assumed to be well stirred. The model has been verified by conducting experiments with KI solutions of different concentrations and using different gas atmospheres. The model not only explains these results but also the existence of a maximum when Ar---O2 mixtures of different compositions are employed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultrasonication of aqueous KI solution is known to yield I2 due to reaction of iodide ions with hydroxyl radicals, which in turn are generated due to cavitation. Based on this conceptual framework, a model has been developed to predict the rate of iodine formation for KI solutions of various concentrations under different gas atmospheres. The model follows the growth and collapse of a gas-vapour cavity using the Rayleigh-Plesset bubble dynamics equation. The bubble is assumed to behave isothermally during its growth phase and a part of the collapse phase. Thereafter it is assumed to collapse adiabatically, yielding high temperatures and pressures. Thermodynamic equilibrium is assumed in the bubble at the end of collapse phase. The contents of the bubble are assumed to mix with the liquid, and the reactor contents are assumed to be well stirred. The model has been verified by conducting experiments with KI solutions of different concentrations and using different gas atmospheres. The model not only explains these results but also the existence of a maximum when Ar-O2 mixtures of different compositions are employed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zirconia-based solid electrolytes with zircon (ZrSiO4) as the auxiliary electrode have been suggested of sensing silicon concentrations in iron and steel melts. A knowledge of phase relations in the ternary system MO-SiO2-ZrO2 (M = Ca, Mg) is useful for selecting an appropriate auxiliary electrode. In this investigation, an isothermal section for the phase diagram of the system CaO-SiO2ZrO2 at 1573 K has been established by equilibrating mixtures of component oxides in air, followed by quenching and phase identification by optical miroscopy, energy disperse analysis of X-rays (EDAX) and X-ray diffraction analysis (XRD). The equilibrium phase relations have also been confirmed by computation using the available thermodynamic data on condensed phases in the system. The results indicate that zircon is not in thermodynamic equilibrium with calcia-stabilized zirconia or calcium zirconate. The silica containing phase in equilibrium with stabilized zirconia is Ca3ZrSi2O9. Calcium zirconate can coexist with Ca3ZrSi2O9 and Ca2SiO4.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Na0.5Bi0.5TiO3 (NBT) and its derivatives have prompted a great surge in interest owing to their potential as lead-free piezoelectrics. In spite of five decades since its discovery, there is still a lack of clarity on crucial issues such as the origin of significant dielectric relaxation at room temperature, structural factors influencing its depoling, and the status of the recently proposed monoclinic (Cc) structure vis-a-vis the nanosized structural heterogeneities. In this work, these issues are resolved by comparative analysis of local and global structures on poled and unpoled NBT specimens using electron, x-ray, and neutron diffraction in conjunction with first-principles calculation, dielectric, ferroelectric, and piezoelectric measurements. The reported global monoclinic (Cc) distortion is shown not to correspond to the thermodynamic equilibrium state at room temperature. The global monocliniclike appearance rather owes its origin to the presence of local structural and strain heterogeneities. Poling removes the structural inhomogeneities and establishes a long-range rhombohedral distortion. In the process the system gets irreversibly transformed from a nonergodic relaxor to a normal ferroelectric state. The thermal depoling is shown to be associated with the onset of incompatible in-phase tilted octahedral regions in the field-stabilized long range rhombohedral distortion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The emf of the cell, Pt, Ar + O2 + SO2 + SO3/Na2SO4-I/Fe2O2 + Fe2(SO4)3, Pt, has been measured in the temperature range 800 to 1000 K, using a gas mixture of known input composition as the reference electrode. The equilibrium composition of the reference gas at the measuring temperatures was computed using the thermodynamic data on the gaseous species reported in the literature. A mixture of ferric oxide and sulfate was kept in a closed system to ensure establishment of equilibrium partial pressure at the electrode. The cell was designed to avoid physical contact between Fe2(SO4)3 and Na2SO4 electrolyte. Uncertainties arising from the formation of sulfate solid solution were thus eliminated. The Gibbs’ energy of formation of ferric sulfate calculated from the emf is discussed in comparison with data reported in the literature. There is no evidence for the formation of oxysulfates in the Fe-S-0 system. Based on the results obtained in the present study for Fe2(SO4)3 and literature data for other phases, chemical potential diagrams have been constructed for the Fe-S-O system at 900 and 1100 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase relations in the system Ta-Rh-O were determined by analysis of quenched samples corresponding to thirteen compositions inside the ternary triangle after equilibration at 1273 K. All the Ta-Rh alloys were found to be in equilibrium with Ta2O5. Only one ternary oxide TaRhO4 was detected. Based on phase relations in the ternary system, a solid-state electrochemical cell, incorporating calcia-stabilized zirconia as the electrolyte, was designed to measure the standard Gibbs energy of formation (Delta G degrees, J mol(-1)) of TaRhO4 in the temperature range from 900 to 1300 K. For the reaction, 1/2 beta-Ta2O5 + 1/2 Rh2O3(ortho) -> TaRhO4 Delta G degrees = -42993 + 5.676T (+/- 85) The calculated decomposition temperatures of TaRhO4 are 1644 +/- 5K in pure O-2 and 1543 +/- 5K in air at a total pressure p(o) = 0.1 MPa. Thermodynamic properties of TaRhO4 at 298.15K have been evaluated from the results. The limited experimental thermodynamic data for Rh-rich alloys available in the literature are in fair accord with Miedema's model. The Gibbs energies of formation of the different phases in the binary system Ta-Rh were estimated based on these inputs, consistent with the binary phase diagram. Based on the thermodynamic information on the stability of various phases, an oxygen potential diagram for the system Ta-Rh-O at 1273K was constructed. Also presented are temperature-composition diagrams for the ternary system at constant oxygen partial pressures (po(2)/p(o) = 0.212 and 10(-6)) calculated form the basic data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The compounds Pb2PtO4 and PbPt2O4 were synthesized from an intimate mixture of yellow PbO and Pt metal powders by heating under pure oxygen gas at 973 K for periods up to 600 ks with intermediate grinding and recompacting. Both compounds were found to decompose on heating in pure oxygen to PbO and Pt, apparently in conflict with the requirements for equilibrium phase relations in the ternary system Pb–Pt–O. The oxygen chemical potential corresponding to the three-phase mixtures, Pb2PtO4 + PbO + Pt and PbPt2O4 + PbO + Pt were measured as a function of temperature using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the solid electrolyte and pure oxygen gas at 0.1 MPa pressure as the reference electrode. The standard Gibbs free energies of formation of the ternary oxides were derived from the measurements. Analysis of the results indicated that the equilibrium involving three condensed phases Pb2PtO4 + PbO + Pt is metastable. Under equilibrium conditions, Pb2PtO4 should have decomposed to a mixture of PbO and PbPt2O4. Measurement of the oxygen potential corresponding to this equilibrium decomposition as a function of temperature indicated that decomposition temperature in pure oxygen is 1014(±2) K. This was further confirmed by direct determination of phase relations in the ternary Pb–Pt–O by equilibrating several compositions at 1023 K for periods up to 850 ks and phase identification of quenched samples using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Only one ternary oxide PbPt2O4 was stable at 1023 K under equilibrium conditions. Alloys and intermetallic compounds along the Pb–Pt binary were in equilibrium with PbO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data on heats of mixing at 30 'C, vapor-liquid equilibrium, latent heats of vaporization at 686 mmHg, and vapor pressures for the system toluene-l,2-dichloroethane are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to identify the forces involved in the binding and to understand the mechanism involved, equilibrium and kinetic studies were performed on the binding of the winged bean acidic lectin to human erythrocytes. The magnitudes of delta S and delta H were positive and negative respectively, an observation differing markedly from the lectin-simple sugar interactions where delta S and delta H are generally negative. Analysis of the sign and magnitudes of these values indicate that ionic and hydrogen bonded interactions prevail over hydrophobic interactions resulting in net -ve delta H (-37.12 kJ.mol-1) and +ve delta S (14.4 J.mole-1 K-1 at 20 degrees C), thereby suggesting that this entropy driven reaction also reflects conformational changes in the lectin and/or the receptor. Presence of two kinds of receptors for WBA II on erythrocytes, as observed by equilibrium studies, is consistent with the biexponential dissociation rate constants (at 20 degrees C K1 = 1.67 x 10(-3) M-1 sec-1 and K2 = 11.1 x 10(-3) M-1 sec-1). These two rate constants differed by an order of magnitude accounting for the difference in the association constants of the two receptors of WBA II. However, the association process remains monoexponential suggesting no observable difference in the association rates of the lectin molecule with both the receptors, under the experimental conditions studied. The thermodynamic parameters calculated from kinetic data correlate well with those observed by equilibrium. A two-step binding mechanism is proposed based on the kinetic parameters for WBA II-receptor interaction

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vapor-liquid equilibrium data for the system n-heptane-n-butanol have been reported. The thermodynamic consistency of the data was tested with Chao's modified Redlich-Kister equation and Tao's method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presented here is the two-phase thermodynamic (2PT) model for the calculation of energy and entropy of molecular fluids from the trajectory of molecular dynamics (MD) simulations. In this method, the density of state (DoS) functions (including the normal modes of translation, rotation, and intramolecular vibration motions) are determined from the Fourier transform of the corresponding velocity autocorrelation functions. A fluidicity parameter (f), extracted from the thermodynamic state of the system derived from the same MD, is used to partition the translation and rotation modes into a diffusive, gas-like component (with 3Nf degrees of freedom) and a nondiffusive, solid-like component. The thermodynamic properties, including the absolute value of entropy, are then obtained by applying quantum statistics to the solid component and applying hard sphere/rigid rotor thermodynamics to the gas component. The 2PT method produces exact thermodynamic properties of the system in two limiting states: the nondiffusive solid state (where the fluidicity is zero) and the ideal gas state (where the fluidicity becomes unity). We examine the 2PT entropy for various water models (F3C, SPC, SPC/E, TIP3P, and TIP4P-Ew) at ambient conditions and find good agreement with literature results obtained based on other simulation techniques. We also validate the entropy of water in the liquid and vapor phases along the vapor-liquid equilibrium curve from the triple point to the critical point. We show that this method produces converged liquid phase entropy in tens of picoseconds, making it an efficient means for extracting thermodynamic properties from MD simulations.