179 resultados para Thermal pollution of rivers, lakes, etc
em Indian Institute of Science - Bangalore - Índia
Resumo:
The thermal decomposition of three commercial samples of carboxy-terminated polybutadiene (PBCT) resins was studied by thermogravimetric analysis (TGA) at heating rates varying from 2° to 100°C/min. Kinetic parameters of the decomposition process at different heating rates were evaluated by means of the Fuoss method.1 The decomposition process and the activation energy values are found to be dependent on heating rate. Mass-spectrometric analysis of the decomposition products shows that the pyrolysis products of PBCT resins are mainly low molecular weight hydrocarbons: ethylene, acetylene, butadiene, propadiene, vinylcyclohexene, etc. The rates of evolution of these hydrocarbon products vary with the carboxy content of the PBCT resin. Based on this, a carbonium ion mechanism has been suggested for the thermal decomposition. The data generated from this work are of importance for a consideration of the mechanism of combustion of composite solid propellants based on PBCT binders.
Resumo:
Applications of hydriding materials for solid state hydrogen storage, hydrogen compression, thermal energy storage and sorption heating and cooling systems have been demonstrated successfully. However, the performance of these devices significantly depends upon heat and mass transfer characteristics of the reactive packed beds. One of the important parameters regulating heat and mass transfer in the hydriding bed is its effective thermal conductivity (ETC), which is dependent on several operating parameters such as pressure and temperature. ETC also varies significantly due to the variation of hydrogen concentration during the hydriding and dehydriding processes. Based on the extensive studies done by the authors on ETC of metal hydride beds, a review of experimental methods, mathematical studies and augmentation techniques is presented in this paper, with emphasis on the effects of operating parameters on ETC. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
The photocatalytic and thermal degradations of poly(methyl methacrylate), poly(butyl acrylate), and their copolymers of different compositions were studied. The photocatalytic degradation was investigated in o-dichlorobenzene in the presence of two different catalysts, namely, Degussa P-25 and combustion synthesized nanotitania (CSN-TiO2). The samples were analyzed by using gel permeation chromatography (GPC) to obtain the molecular weight distributions (MWDs) as a function of reaction time. Experimental data indicated that the photodegradation of these polymers occurs by both random and chain end scission. A continuous distribution kinetic model was used to determine the degradation rate coefficients by fitting the experimental data with the model. Both the random and specific rate coefficients of the copolymers decreased with increasing percentage of butyl acrylate (BA). Thermal degradation of the copolymers was investigated by thermo-gravimetry. The normalized weight loss profiles for the copolymers showed that the thermal stability of the copolymers increased with mole percentage of BA in the copolymer (PMMABA). The Czawa method was used to determine the activation energies at different conversions. At low acrylate content in the copolymer, the activation energy depends on conversion, indicating multiple degradation mechanisms. At high acrylate content in the copolymer, the activation energy is independent of conversion, indicating degradation by a one-step mechanism.
Resumo:
An interesting, periodic appearance of a new peak has been observed in the reflected spectrum of a Fiber Bragg Grating (FBG) inscribed in a germanosilicate fiber during thermal treatment. The new peak occurs on the longer wavelength side of the spectrum during heating and on the shorter wavelength side during cooling, following an identical reverse dynamics. Comparison with a commercial grating with 99.9% reflectivity shows a similar decay dynamics. It is proposed that the distortion due to simultaneous erasure and thermal expansion of the index modulation profile may be responsible for the observed anomaly. The reported results help us in understanding the thermal behavior of FBGs and provide additional insights into the mechanisms responsible for the photosensitivity in germanosilicate fibers.
Resumo:
Abstract is not available.
Resumo:
Evidence of the initiation process during uncatalyzed thermal polymerization of vinyl monomers is presented. DSC studies reveal a prominent endothermic effect just before the polymerization exotherm, which is substantiated by the identification of the free radicals produced in the initiation by a quick quenching technique and subsequent detection by ESR at low temperatures.
Resumo:
Studies on the low temperature oxidation of polyolefins have been the subject matter of several investigations because of interest in understanding the aging and weathering of polymers. One of the key steps in such an oxtdatton is the formation of hydroperoxide. Estimation of the hydroperoxide in oxidized samples, which is conventionally done by iodometric titrations, is quite important to gain knowledge about the kinetics and mechanism of the process. The present investigation is the first report of the thermal analysis of polypropylene hydroperoxide samples from two angles: (1) the thermal behavior of its decomposition and (2) whether such an analysis leads to knowledge of the concentration of hydroperoxide in the sample.
Resumo:
It has been observed that poly(styrene peroxide) with a high molecular weight is thermally less stable than the same polymer with a low molecular weight. This has been explained as being due to the strain on the O-O bond due to the greater polymer chain length.
Resumo:
The kinetics of decomposition of the carbonate Sr2Zr2O5CO3, are greatly influenced by the thermal effects during its formation. (α−t) curves are found to be sigmoidal and they could be analysed based on power law equations followed by first-order decay. The presence of carbon in the vacuum-prepared sample of carbonate has a strong deactivating effect. The carbonate is fairly crystalline and its decomposition leads to the formation of crystalline strontium zirconate.
Resumo:
The role of melt convection oil the performance of beat sinks with Phase Change Material (PCM) is presented in this paper. The beat sink consists of aluminum plate fins embedded in PCM and heat flux is supplied from the bottom. The design of such a heat sink requires optimization with respect to its geometrical parameters. The objective of the optimization is to maximize the heat sink operation time for the prescribed heat flux and the critical chip temperature. The parameters considered for optimization are fin number and fill thickness. The height and base plate thickness of heat sink are kept constant in the present analysis. An enthalpy based CFD model is developed, which is capable Of Simulating phase change and associated melt convection. The CFD model is Coupled with Genetic Algorithm (GA) for carrying out the optimization. Two cases are considered, one without melt convection (conduction regime) and the other with convection. It is found that the geometrical optimizations of heat sinks are different for the two cases, indicating the importance of inch convection in the design of heat sinks with PCMs.
Resumo:
We investigate the effects of radiative heat losses and thermal conductivity on the hydromagnetic surface waves along a magnetic discontinuity in a plasma of infinite electrical conductivity. We show that the effects of radiative heat losses on such surface waves are appreciable only when values of the plasma pressure on the two sides of the discontinuity are substantially different. Overstability of a surface wave requires that the medium in which it gives larger first-order compression should satisfy the criterion of Field (1965). Possible applications of the study to magnetic discontinuities in solar corona are briefly discussed.
Resumo:
Ammonium perchlorate (AP) has been coated with polystyrene (PS), cellulose acetate (CA), Novolak resin and polymethylmethacrylate (PMMA) by a solvent/nonsolvent method which makes use of the coacervation principle. The effect of polymer coating on AP decomposition has been studied using thermogravimetry (TG) and differential thermal analysis (DTA). Polymer coating results in the desensitization of AP decomposition. The observed effect has been attributed to the thermophysical and thermochemical properties of the polymer used for coating. The effect of polystyrene coating on thermal decomposition of aluminium perchlorate trihydrazinate and ammonium nitrate as well as on the combustion of AP-CTPB composite propellants has been studied.
Resumo:
Initiation and propagation processes in thermally initiated solid-state polymerization of sodiumvacrylate have been studied. The kinetics of initiation, followed with the electron spin resonancev technique, leads to an activation energy E of 28.8 kcal/mol, which is attributed to the formation of dimeric radicals. The activation energy of 16 f 1 kcaVmol obtained for the solid-state polymerization of sodium acrylate by chemical analysis and differential scanning calorimetry has been attributed to the propagation process.
Resumo:
The scanning thermogram of a block sample of a double-base propellant shows a shoulder around 200°C which is not observed in a powder sample of the sample propellant. The heat of decomposition was also found to be different In the two cases. Product analysis and activation energy calculations show that nitroglycerine un dergoes decomposition in the block sample, whereas it vaporizes in the powder sample.
Resumo:
The role of imperfections in thermal polymerization of acrylamide in the solid state was studied. The polymer yield and the degree of polymerization are highly dependent on the particle size and on the pressure to which the monomer is subjected prior to polymerization reaction. There is an enhancement in the rate of polymerization in air unlike in the case of radiation-induced polymerization. Thermal polymerization of acrylamide in pelletized form results in the formation of water-soluble linear polymer and water-insoluble cross-linked product with the evolution of ammonia. The activation energy (E) values obtained in the present investigation reveal that basically there are two processes taking place, one with E = 34–36 kcal/mole, corresponding to the initiation process, and the other with E = 19 ± 3 kcal/more for the propagation process.