51 resultados para Thematic Mapper Images

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents hierarchical clustering algorithms for land cover mapping problem using multi-spectral satellite images. In unsupervised techniques, the automatic generation of number of clusters and its centers for a huge database is not exploited to their full potential. Hence, a hierarchical clustering algorithm that uses splitting and merging techniques is proposed. Initially, the splitting method is used to search for the best possible number of clusters and its centers using Mean Shift Clustering (MSC), Niche Particle Swarm Optimization (NPSO) and Glowworm Swarm Optimization (GSO). Using these clusters and its centers, the merging method is used to group the data points based on a parametric method (k-means algorithm). A performance comparison of the proposed hierarchical clustering algorithms (MSC, NPSO and GSO) is presented using two typical multi-spectral satellite images - Landsat 7 thematic mapper and QuickBird. From the results obtained, we conclude that the proposed GSO based hierarchical clustering algorithm is more accurate and robust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an improved hierarchical clustering algorithm for land cover mapping problem using quasi-random distribution. Initially, Niche Particle Swarm Optimization (NPSO) with pseudo/quasi-random distribution is used for splitting the data into number of cluster centers by satisfying Bayesian Information Criteria (BIC). Themain objective is to search and locate the best possible number of cluster and its centers. NPSO which highly depends on the initial distribution of particles in search space is not been exploited to its full potential. In this study, we have compared more uniformly distributed quasi-random with pseudo-random distribution with NPSO for splitting data set. Here to generate quasi-random distribution, Faure method has been used. Performance of previously proposed methods namely K-means, Mean Shift Clustering (MSC) and NPSO with pseudo-random is compared with the proposed approach - NPSO with quasi distribution(Faure). These algorithms are used on synthetic data set and multi-spectral satellite image (Landsat 7 thematic mapper). From the result obtained we conclude that use of quasi-random sequence with NPSO for hierarchical clustering algorithm results in a more accurate data classification.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The widely used Bayesian classifier is based on the assumption of equal prior probabilities for all the classes. However, inclusion of equal prior probabilities may not guarantee high classification accuracy for the individual classes. Here, we propose a novel technique-Hybrid Bayesian Classifier (HBC)-where the class prior probabilities are determined by unmixing a supplemental low spatial-high spectral resolution multispectral (MS) data that are assigned to every pixel in a high spatial-low spectral resolution MS data in Bayesian classification. This is demonstrated with two separate experiments-first, class abundances are estimated per pixel by unmixing Moderate Resolution Imaging Spectroradiometer data to be used as prior probabilities, while posterior probabilities are determined from the training data obtained from ground. These have been used for classifying the Indian Remote Sensing Satellite LISS-III MS data through Bayesian classifier. In the second experiment, abundances obtained by unmixing Landsat Enhanced Thematic Mapper Plus are used as priors, and posterior probabilities are determined from the ground data to classify IKONOS MS images through Bayesian classifier. The results indicated that HBC systematically exploited the information from two image sources, improving the overall accuracy of LISS-III MS classification by 6% and IKONOS MS classification by 9%. Inclusion of prior probabilities increased the average producer's and user's accuracies by 5.5% and 6.5% in case of LISS-III MS with six classes and 12.5% and 5.4% in IKONOS MS for five classes considered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated area changes in glaciers covering an area of similar to 200 km(2) in the Tista basin, Sikkim, Eastern Indian Himalaya, between similar to 1990 and 2010 using Landsat Thematic Mapper (TM) and Indian Remote-sensing Satellite (IRS) images and related the changes to debris cover, supraglacial lakes and moraine-dam lakes. The glaciers lost an area of 3.3 +/- 0.8% between 1989/90 and 2010. More detailed analysis revealed an area loss of 2.00 +/- 0.82, 2.56 +/- 0.61 and 2.28 +/- 2.01 km(2) for the periods 1989-97, 1997-2004/05 and 2004-2009/10, respectively. This indicates an accelerated retreat of glaciers after 1997. On further analysis, we observed (1) the formation and expansion of supraglacial lakes on many debris-covered glaciers and (2) the merging of these lakes over time, leading to the development of large moraine-dam lakes. We also observed that debris-covered glaciers with lakes lose a greater area than debris-covered glaciers without lakes and debris-free glaciers. The climatic data for 24 years (1987-2011), measured at the Gangtok meteorological station (1812 m a.s.l.), showed that the region experienced a 1.0 degrees C rise in the summer minimum temperature and a 2.0 degrees C rise in the winter minimum temperature, indicating hotter summers and warmer winters. There was no significant trend in the total annual precipitation. We find that glacier retreat is caused mainly by a temperature increase and that debris-covered glaciers can retreat at a faster rate than debris-free glaciers, if associated with lakes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper investigates a new Glowworm Swarm Optimization (GSO) clustering algorithm for hierarchical splitting and merging of automatic multi-spectral satellite image classification (land cover mapping problem). Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to classify all the basic land cover classes of an urban region in a satisfactory manner. In unsupervised classification methods, the automatic generation of clusters to classify a huge database is not exploited to their full potential. The proposed methodology searches for the best possible number of clusters and its center using Glowworm Swarm Optimization (GSO). Using these clusters, we classify by merging based on parametric method (k-means technique). The performance of the proposed unsupervised classification technique is evaluated for Landsat 7 thematic mapper image. Results are evaluated in terms of the classification efficiency - individual, average and overall.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[1] Evaporative fraction (EF) is a measure of the amount of available energy at the earth surface that is partitioned into latent heat flux. The currently operational thermal sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) on satellite platforms provide data only at 1000 m, which constraints the spatial resolution of EF estimates. A simple model (disaggregation of evaporative fraction (DEFrac)) based on the observed relationship between EF and the normalized difference vegetation index is proposed to spatially disaggregate EF. The DEFrac model was tested with EF estimated from the triangle method using 113 clear sky data sets from the MODIS sensor aboard Terra and Aqua satellites. Validation was done using the data at four micrometeorological tower sites across varied agro-climatic zones possessing different land cover conditions in India using Bowen ratio energy balance method. The root-mean-square error (RMSE) of EF estimated at 1000 m resolution using the triangle method was 0.09 for all the four sites put together. The RMSE of DEFrac disaggregated EF was 0.09 for 250 m resolution. Two models of input disaggregation were also tried with thermal data sharpened using two thermal sharpening models DisTrad and TsHARP. The RMSE of disaggregated EF was 0.14 for both the input disaggregation models for 250 m resolution. Moreover, spatial analysis of disaggregation was performed using Landsat-7 (Enhanced Thematic Mapper) ETM+ data over four grids in India for contrasted seasons. It was observed that the DEFrac model performed better than the input disaggregation models under cropped conditions while they were marginally similar under non-cropped conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The inversion of canopy reflectance models is widely used for the retrieval of vegetation properties from remote sensing. This study evaluates the retrieval of soybean biophysical variables of leaf area index, leaf chlorophyll content, canopy chlorophyll content, and equivalent leaf water thickness from proximal reflectance data integrated broadbands corresponding to moderate resolution imaging spectroradiometer, thematic mapper, and linear imaging self scanning sensors through inversion of the canopy radiative transfer model, PROSAIL. Three different inversion approaches namely the look-up table, genetic algorithm, and artificial neural network were used and performances were evaluated. Application of the genetic algorithm for crop parameter retrieval is a new attempt among the variety of optimization problems in remote sensing which have been successfully demonstrated in the present study. Its performance was as good as that of the look-up table approach and the artificial neural network was a poor performer. The general order of estimation accuracy for para-meters irrespective of inversion approaches was leaf area index > canopy chlorophyll content > leaf chlorophyll content > equivalent leaf water thickness. Performance of inversion was comparable for broadband reflectances of all three sensors in the optical region with insignificant differences in estimation accuracy among them.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The non-availability of high-spatial-resolution thermal data from satellites on a consistent basis led to the development of different models for sharpening coarse-spatial-resolution thermal data. Thermal sharpening models that are based on the relationship between land-surface temperature (LST) and a vegetation index (VI) such as the normalized difference vegetation index (NDVI) or fraction vegetation cover (FVC) have gained much attention due to their simplicity, physical basis, and operational capability. However, there are hardly any studies in the literature examining comprehensively various VIs apart from NDVI and FVC, which may be better suited for thermal sharpening over agricultural and natural landscapes. The aim of this study is to compare the relative performance of five different VIs, namely NDVI, FVC, the normalized difference water index (NDWI), soil adjusted vegetation index (SAVI), and modified soil adjusted vegetation index (MSAVI), for thermal sharpening using the DisTrad thermal sharpening model over agricultural and natural landscapes in India. Multi-temporal LST data from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors obtained over two different agro-climatic grids in India were disaggregated from 960 m to 120 m spatial resolution. The sharpened LST was compared with the reference LST estimated from the Landsat data at 120 m spatial resolution. In addition to this, MODIS LST was disaggregated from 960 m to 480 m and compared with ground measurements at five sites in India. It was found that NDVI and FVC performed better only under wet conditions, whereas under drier conditions, the performance of NDWI was superior to other indices and produced accurate results. SAVI and MSAVI always produced poorer results compared with NDVI/FVC and NDWI for wet and dry cases, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a robust method for mosaicing of document images using features derived from connected components. Each connected component is described using the Angular Radial Tran. form (ART). To ensure geometric consistency during feature matching, the ART coefficients of a connected component are augmented with those of its two nearest neighbors. The proposed method addresses two critical issues often encountered in correspondence matching: (i) The stability of features and (ii) Robustness against false matches due to the multiple instances of characters in a document image. The use of connected components guarantees a stable localization across images. The augmented features ensure a successful correspondence matching even in the presence of multiple similar regions within the page. We illustrate the effectiveness of the proposed method on camera captured document images exhibiting large variations in viewpoint, illumination and scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Now that crystals are being considered suitable for high density optical information storage, it is important to reduce the noise levels of retrieved images. The paper describes a simple technique to bring this about.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article describes a new method for obtaining a holographic image of desired magnification, consistent with the stipulated criteria for its resolution and aberrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two different matrix algorithms are described for the restoration of blurred pictures. These are illustrated by numerical examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a new feature-based approach for mosaicing of camera-captured document images. A novel block-based scheme is employed to ensure that corners can be reliably detected over a wide range of images. 2-D discrete cosine transform is computed for image blocks defined around each of the detected corners and a small subset of the coefficients is used as a feature vector A 2-pass feature matching is performed to establish point correspondences from which the homography relating the input images could be computed. The algorithm is tested on a number of complex document images casually taken from a hand-held camera yielding convincing results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skew correction of complex document images is a difficult task. We propose an edge-based connected component approach for robust skew correction of documents with complex layout and content. The algorithm essentially consists of two steps - an 'initialization' step to determine the image orientation from the centroids of the connected components and a 'search' step to find the actual skew of the image. During initialization, we choose two different sets of points regularly spaced across the the image, one from the left to right and the other from top to bottom. The image orientation is determined from the slope between the two succesive nearest neighbors of each of the points in the chosen set. The search step finds succesive nearest neighbors that satisfy the parameters obtained in the initialization step. The final skew is determined from the slopes obtained in the 'search' step. Unlike other connected component based methods, the proposed method does not require any binarization step that generally precedes connected component analysis. The method works well for scanned documents with complex layout of any skew with a precision of 0.5 degrees.