16 resultados para The Power of Kangwon Province
em Indian Institute of Science - Bangalore - Índia
Resumo:
Polyembryony, referring here to situations where a nucellar embryo is formed along with the zygotic embryo, has different consequences for the fitness of the maternal parent and offspring. We have developed genetic and inclusive fitness models to derive the conditions that permit the evolution of polyembryony under maternal and offspring control. We have also derived expressions for the optimal allocation (evolutionarily stable strategy, ESS) of resources between zygotic and nucellar embryos. It is seen that (i) Polyembryony can evolve more easily under maternal control than under that of either the offspring or the ‘selfish’ endosperm. Under maternal regulation, evolution of polyembryony can occur for any clutch size. Under offspring control polyembryony is more likely to evolve for high clutch sizes, and is unlikely for low clutch sizes (<3). This conflict between mother and offspring decreases with increase in clutch size and favours the evolution of polyembryony at high clutch sizes, (ii) Polyembryony can evolve for values of “x” (the power of the function relating fitness to seed resource) greater than 0.5758; the possibility of its occurrence increases with “x”, indicating that a more efficient conversion of resource into fitness favours polyembryony. (iii) Under both maternal parent and offspring control, the evolution of polyembryony becomes increasingly unlikely as the level of inbreeding increases, (iv) The proportion of resources allocated to the nucellar embryo at ESS is always higher than that which maximizes the rate of spread of the allele against a non-polyembryonic allele.Finally we argue that polyembryony is a maternal counter strategy to compensate for the loss in her fitness due to brood reduction caused by sibling rivalry. We support this assertion by two empirical evidences: (a) the extent of polyembryony is positively correlated with brood reduction inCitrus, and (b) species exhibiting polyembryony are more often those that frequently exhibit brood reduction.
Resumo:
The power system network is assumed to be in steady-state even during low frequency transients. However, depending on generator dynamics, and toad and control characteristics, the system model and the nature of power flow equations can vary The nature of power flow equations describing the system during a contingency is investigated in detail. It is shown that under some mild assumptions on load-voltage characteristics, the power flow equations can be decoupled in an exact manner. When the generator dynamics are considered, the solutions for the load voltages are exact if load nodes are not directly connected to each other
Resumo:
In this paper a modified Heffron-Phillip's (K-constant) model is derived for the design of power system stabilizers. A knowledge of external system parameters, such as equivalent infinite bus voltage and external impedances or their equivalent estimated values is required for designing a conventional power system stabilizer. In the proposed method, information available at the secondary bus of the step-up transformer is used to set up a modified Heffron-Phillip's (ModHP) model. The PSS design based on this model utilizes signals available within the generating station. The efficacy of the proposed design technique and the performance of the stabilizer has been evaluated over a range of operating and system conditions. The simulation results have shown that the performance of the proposed stabilizer is comparable to that could be obtained by conventional design but without the need for the estimation and computation of external system parameters. The proposed design is thus well suited for practical applications to power system stabilization, including possibly the multi-machine applications where accurate system information is not readily available.
Resumo:
The Dissolved Gas Analysis (DGA) a non destructive test procedure, has been in vogue for a long time now, for assessing the status of power and related transformers in service. An early indication of likely internal faults that may exist in Transformers has been seen to be revealed, to a reasonable degree of accuracy by the DGA. The data acquisition and subsequent analysis needs an expert in the concerned area to accurately assess the condition of the equipment. Since the presence of the expert is not always guaranteed, it is incumbent on the part of the power utilities to requisition a well planned and reliable artificial expert system to replace, at least in part, an expert. This paper presents the application of Ordered Ant Mner (OAM) classifier for the prediction of involved fault. Secondly, the paper also attempts to estimate the remaining life of the power transformer as an extension to the elapsed life estimation method suggested in the literature.
Resumo:
A simple apparatus to measure the absolute thermoelectric power of solids in the temperature range 4·2–300K is described. The cryostat and the associated instrumentation is simple to operate. Representative data of measurements on metallic wire and pressed pellets are given. An accuracy of better than 10% in absolute thermopower can be obtained in this apparatus.
Resumo:
Application of differential geometry to study the dynamics of electrical machines by Gabriel Kron evoked only theoretical interest among the power system engineers and was considered hardly suitable for any practical use. Extension of Kron's work led to a physical understanding of the processes governing the small oscillation instability in power system. This in turn has made it possible to design a self-tuning Power System Stabilizer to contain the oscillatory instability over arm extended range of system and operating conditions. This paper briefly recounts the history of this development and touches upon the essential design features of the stabilizer. It presents some results from simulation studies, laboratory experiments and recently conducted field trials at actual plants-all of which help to establish the efficacy of the proposed stabilizer and corroborate the theoretical findings.
Resumo:
Representatives of several Internet access providers have expressed their wish to see a substantial change in the pricing policies of the Internet. In particular, they would like to see content providers pay for use of the network, given the large amount of resources they use. This would be in clear violation of the �network neutrality� principle that had characterized the development of the wireline Internet. Our first goal in this paper is to propose and study possible ways of implementing such payments and of regulating their amount. We introduce a model that includes the internaut�s behavior, the utilities of the ISP and of the content providers, and the monetary flow that involves the internauts, the ISP and content provider, and in particular, the content provider�s revenues from advertisements. We consider various game models and study the resulting equilibrium; they are all combinations of a noncooperative game (in which the service and content providers determine how much they will charge the internauts) with a cooperative one - the content provider and the service provider bargain with each other over payments to one another. We include in our model a possible asymmetric bargaining power which is represented by a parameter (that varies between zero to one). We then extend our model to study the case of several content providers. We also provide a very brief study of the equilibria that arise when one of the content providers enters into an exclusive contract with the ISP.
Resumo:
The technological world has attained a new dimension with the advent of miniaturization and a major breakthrough has evolved in the form of moems, technically more advanced than mems. This breakthrough has paved way for the scientists to research and conceive their innovation. This paper presents a mathematical analysis of the wave propagation along the non-uniform waveguide with refractive index varying along the z axis implemented on the cantilever beam of MZI based moem accelerometer. Secondly the studies on the wave bends with minimum power loss focusing on two main aspects of bend angle and curvature angle is also presented.
Resumo:
It is generally known that addition of conducting or insulating particles to mineral transformer oil, lowers its breakdown strength, E-d. However, if the particulates are of molecular dimensions, or nanoparticles, (NPs), as they are called, the breakdown strength is seen to increase considerably. Recent experiments by the authors on oil cooled power equipment such as transformers showed that, nanofluids comprising NPs of selected oxides of iron, such as Fe(3)o(4), called magnetite, added to transformer oil increased the breakdown voltage of the virgin oil and more importantly a remarkable enhancement in the thermal conductivity and the viscosity and hence an increased loadability of the transformer for a given top oil temperature (TOT).
Resumo:
The presence of software bloat in large flexible software systems can hurt energy efficiency. However, identifying and mitigating bloat is fairly effort intensive. To enable such efforts to be directed where there is a substantial potential for energy savings, we investigate the impact of bloat on power consumption under different situations. We conduct the first systematic experimental study of the joint power-performance implications of bloat across a range of hardware and software configurations on modern server platforms. The study employs controlled experiments to expose different effects of a common type of Java runtime bloat, excess temporary objects, in the context of the SPECPower_ssj2008 workload. We introduce the notion of equi-performance power reduction to characterize the impact, in addition to peak power comparisons. The results show a wide variation in energy savings from bloat reduction across these configurations. Energy efficiency benefits at peak performance tend to be most pronounced when bloat affects a performance bottleneck and non-bloated resources have low energy-proportionality. Equi-performance power savings are highest when bloated resources have a high degree of energy proportionality. We develop an analytical model that establishes a general relation between resource pressure caused by bloat and its energy efficiency impact under different conditions of resource bottlenecks and energy proportionality. Applying the model to different "what-if" scenarios, we predict the impact of bloat reduction and corroborate these predictions with empirical observations. Our work shows that the prevalent software-only view of bloat is inadequate for assessing its power-performance impact and instead provides a full systems approach for reasoning about its implications.
Resumo:
This paper presents a new voltage stability index based on the tangent vector of the power flow jacobian. This index is capable of providing the relative vulnerability information of the system buses from the point of view of voltage collapse. In an effort to compare this index with a similar index, the popular voltage stability index L is studied and it is shown through system studies that the L index is not a very consistent indicator of the voltage collapse point of the system but is only a reasonable indicator of the vulnerability of the system buses to voltage collapse. We also show that the new index can be used in the voltage stability analysis of radial systems which is not possible with the L index. This is a significant result of this investigation since there is a lot of contemporary interest in distributed generation and microgrids which are by and large radial in nature. Simulation results considering several test systems are provided to validate the results and the computational needs of the proposed scheme is assessed in comparison with other schemes
Resumo:
This study concerns the relationship between the power law recession coefficient k (in - dQ/dt = kQ(alpha), Q being discharge at the basin outlet) and past average discharge Q(N) (where N is the temporal distance from the center of the selected time span in the past to the recession peak), which serves as a proxy for past storage state of the basin. The strength of the k-Q(N) relationship is characterized by the coefficient of determination R-N(2), which is expected to indicate the basin's ability to hold water for N days. The main objective of this study is to examine how R-N(2) value of a basin is related with its physical characteristics. For this purpose, we use streamflow data from 358 basins in the United States and selected 18 physical parameters for each basin. First, we transform the physical parameters into mutually independent principal components. Then we employ multiple linear regression method to construct a model of R-N(2) in terms of the principal components. Furthermore, we employ step-wise multiple linear regression method to identify the dominant catchment characteristics that influence R-N(2) and their directions of influence. Our results indicate that R-N(2) is appreciably related to catchment characteristics. Particularly, it is noteworthy that the coefficient of determination of the relationship between R-N(2) and the catchment characteristics is 0.643 for N = 45. We found that topographical characteristics of a basin are the most dominant factors in controlling the value of R-N(2). Our results may be suggesting that it is possible to tell about the water holding capacity of a basin by just knowing about a few of its physical characteristics. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This paper presents an analysis of an organic Rankine cycle (ORC) with dry cooling system aided by an earth-coupled passive cooling system. Several organic fluids were considered as working fluids in the ORC in the temperature range of 125-200 degrees C. An earth-air-heat-exchanger (EMU) is studied for a location in the United States (Las Vegas) and another in India (New Delhi), to pre cool the ambient air before entering an air-cooled condenser (ACC). It was observed that the efficiency of the system improved by 1-3% for the system located in Las Vegas and fluctuations associated with temperature variations of the ambient air were also reduced when the EAHE system was used. A ground-coupled heat pump (GCHP) is also studied for these locations where cooling water is pre cooled in an underground buried pipe before entering a condenser heat exchanger in a closed loop. The area of the buried pipe and the condenser size are calculated per kW of power generation for various working fluids.