80 resultados para The Lattice Solid Model
em Indian Institute of Science - Bangalore - Índia
Resumo:
A lattice-gas model of multilayer adsorption has been solved in the mean-field approximation by a different numerical method. Earlier workers obtained a single solution for all values of temperature and pressure. In the present work, multiple solutions have been obtained in certain regions of temperature and pressure which give rise to bysteresis in the adsorption isotherm. In addition, we have obtained a parameter which behaves like an order parameter for the transition. The potential-energy function shows a double minimum in the region of bysteresis and a single maximum elsewhere.
Resumo:
We present a variety of physical implications of a mean-field theory for spiral spin-density-wave states in the square-lattice Hubbard model for small deviations from half filling. The phase diagram with the paramagnetic metal, two spiral (semimetallic) states, and ferromagnet is calculated. The momentum distribution function and the (quasiparticle) density of states are discussed. There is a significant broadening of the quasiparticle bands when the antiferromagnetic insulator is doped. The evolution of the Fermi surface and the variation of the plasma frequency and a charge-stiffness constant with U/t and δ are calculated. The connection to results based on the Schwinger-boson-slave-fermion formalism is made.
Resumo:
Present paper is the first one in the series devoted to the dynamics of traveling waves emerging in the uncompressed, tri-atomic granular crystals. This work is primarily concerned with the dynamics of one-dimensional periodic granular trimer (tri-atomic) chains in the state of acoustic vacuum. Each unit cell consists of three spherical particles of different masses subject to periodic boundary conditions. Hertzian interaction law governs the mutual interaction of these particles. Under the assumption of zero pre-compression, this interaction is modeled as purely nonlinear, which means the absence of linear force component. The dynamics of such chains is governed by the two system parameters that scale the mass ratios between the particles of the unit cell. Such a system supports two different classes of periodic solutions namely the traveling and standing waves. The primary objective of the present study is the numerical analysis of the bifurcation structure of these solutions with emphasis on the dynamics of traveling waves. In fact, understanding of the bifurcation structure of the traveling wave solutions emerging in the unit-cell granular trimer is rather important and can shed light on the more complex nonlinear wave phenomena emerging in semi-infinite trimer chains. (c) 2016 Elsevier B.V. All rights reserved.
Resumo:
A model of mobile 0-holes hybrized with Cu-spins on a square lattice is examined. A variational groundstate wavefunction which interpolates smoothly between n.n. RVB and Néel limits gives a Néellike minimum. A hole in an AF lattice polarizes it locally and becomes quite mobile. Two n.n. holes attract. Finally we speculate how holes can stabilize a spin liquid state.
Resumo:
The temperature dependence of the critical micelle concentration (CMC) and a closed-loop coexistence curve are obtained, via Monte Carlo simulations, in the water surfactant limit of a two-dimensional version of a statistical mechanical model for micro-emulsions, The CMC and the coexistence curve reproduce various experimental trends as functions of the couplings. In the oil-surfactant limit, there is a conventional coexistence cure with an upper consolute point that allows for a region of three-phase coexistence between oil-rich, water-rich and microemulsion phases.
Resumo:
The continuum model of dipolar solvation dynamics is reviewed. The effects of non-spherical molecular shapes, of non-Debye dielectric relaxation of the polar solvent and of dielectric inhomogeneity of the solvent around the solute dipole are investigated. Several new theoretical results are presented. It is found that our generalized continuum model, which takes into account the dielectric inhomogeneity of the surrounding solvent, provides a description of solvation dynamics consistent with recent experimental results.
Resumo:
This paper describes an algorithm for constructing the solid model (boundary representation) from pout data measured from the faces of the object. The poznt data is assumed to be clustered for each face. This algorithm does not require any compuiier model of the part to exist and does not require any topological infarmation about the part to be input by the user. The property that a convex solid can be constructed uniquely from geometric input alone is utilized in the current work. Any object can be represented a5 a combznatzon of convex solids. The proposed algorithm attempts to construct convex polyhedra from the given input. The polyhedra so obtained are then checked against the input data for containment and those polyhedra, that satisfy this check, are combined (using boolean union operation) to realise the solid model. Results of implementation are presented.
Resumo:
Abstract: Activities in the spinel solid solution FexMg1-xAl2O4 saturated with alpha-Al2O3 have been measured for the compositional range 0 < X < 1 between 1100 and 1350 K using a bielectrolyte solid-state galvanic cell, which may be represented as Pt, Fe + FexMg1-xAl2O4 + alpha-Al2O3//(Y2O3)ThO2/ (CaO)ZrO2//Fe + FeAl2O4 + alpha-Al2O3, Pt Activities of ferrous and magnesium aluminates exhibit small negative deviations from Raoult's law. The excess free energy of mixing of the solid solution is a symmetric function of composition and is independent of temperature: Delta G(E) = -1990 X(1 - X J/mol. Theoretical analysis of cation distribution in spinel solid solution also suggests mild negative deviations from ideality. The lattice parameter varies linearly with composition in samples quenched from 1300 K. Phase relations in the FeO-MgO-Al2O3 system at 1300 K are deduced from the results of this study and auxiliary thermodynamic data from the literature. The calculation demonstrates the influence of intracrystalline ion exchange equilibrium between nonequivalent crystallographic sites in the spinel structure on intercrystalline ion exchange equilibrium between the monoxide and spinel solid solutions (tie-lines). The composition dependence of oxygen partial pressure at 1300 K is evaluated for three-phase equilibria involving the solid solutions Fe + FexMg1-xAl2O4 + alpha-Al2O3 and Fe + FeyMg1-yO + FexMg1-xAl2O4. Dependence of X, denoting the composition of the spinel solid solution, on parameter Y, characterizing the composition of the monoxide solid solution with rock salt structure, in phase fields involving the two solid solutions is elucidated. The tie-lines are slightly skewed toward the MgAl2O4 corner.
Resumo:
Interaction of CH3OH with Cu clusters deposited on ZnO films grown on a Zn foil as well as on a ZnO(0001)Zn crystal, has been examined by X-ray photoelectron spectroscopy. On clean Cu clusters, reversible molecular adsorption or formation of CH3O is observed. However if the Cu clusters are pretreated with oxygen, both CH3O and HCOO- species are produced. Model Cu/ZnO catalyst surfaces, containing both Cu1+ and Cu-0 species, show interesting oxidation properties. On a Cu-0-rich catalyst surface, only CH3O species is formed on interaction with CH3OH. On a Cu1+-rich surface, however, HCOO- ion is the predominant species.
Resumo:
We use the extended Hubbard model to investigate the properties of the charge- and spin-density-wave phases in the presence of a nearest-neighbors repulsion term in the framework of the slave-boson technique. We show that, contrary to Hartree-Fock results, an instablity may occur for sufficiently high values of the Hubbard repulsion, both in the spin- and charge-density-wave phase, which makes the system discontinuously jump to a phase with a smaller or zero wave amplitude. The limits of applicability of our approach are discussed and our results are compared with previous numerical analysis. The phase diagram of the model at half-filling is determined.
Resumo:
The crystal structure, thermal expansion and electrical conductivity of strontium-doped neodymium ferrite (Nd1-xSrxFeO3-delta where 0less than or equal toxless than or equal to0.4) were investigated. All compositions had the GdFeO3-type orthorhombic perovskite structure. The lattice parameters were determined at room temperature by X-ray powder diffraction. The orthorhombic distortion decreases with increasing Sr substitution. The pseudocubic lattice parameter shows a minimum at x=0.3. The thermal expansion curves for x=0.2-0.4 displayed rapid increase in slope at higher temperatures. The electrical conductivity increased with Sr content and temperature. The calculated activation energies for electrical conduction decreased with increasing x. The electrical conductivity can be described by the small polaron hopping mechanism. The charge compensation for divalent ion on the A-site is provided by the formation of Fe4+ ions on the B site and vacancies on the oxygen sublattice. The results indicate two defect domains: for low values of x, the predominant defect is Fe4+ ions, whereas for higher values of x, oxygen vacancies dominate. (C) 2002 Elsevier Science B.V. All rights reserved.
Reconstructing Solid Model from 2D Scanned Images of Biological Organs for Finite Element Simulation
Resumo:
This work presents a methodology to reconstruct 3D biological organs from image sequences or other scan data using readily available free softwares with the final goal of using the organs (3D solids) for finite element analysis. The methodology deals with issues such as segmentation, conversion to polygonal surface meshes, and finally conversion of these meshes to 3D solids. The user is able to control the detail or the level of complexity of the solid constructed. The methodology is illustrated using 3D reconstruction of a porcine liver as an example. Finally, the reconstructed liver is imported into the commercial software ANSYS, and together with a cyst inside the liver, a nonlinear analysis performed. The results confirm that the methodology can be used for obtaining 3D geometry of biological organs. The results also demonstrate that the geometry obtained by following this methodology can be used for the nonlinear finite element analysis of organs. The methodology (or the procedure) would be of use in surgery planning and surgery simulation since both of these extensively use finite elements for numerical simulations and it is better if these simulations are carried out on patient specific organ geometries. Instead of following the present methodology, it would cost a lot to buy a commercial software which can reconstruct 3D biological organs from scanned image sequences.
Resumo:
A review of the structural and thermodynamic information and phase equilibria in the Cu-Fe-O system suggested that a consistent, quantitative description of the system is hampered by lack of data on activities in the spinel solid solution CuFe2O4-Fe3O4. Therefore the activity of Fe3O4 in this solid solution is derived from measurements of the oxygen potentials established at 1000°C by mixtures containing Fe2O3 and spinel solid solutions of known composition. The oxygen pressures were measured manometrically for solid solutions rich in CuFe2O4, while for Fe3O4-rich compositions the oxygen potentials were obtained by an emf technique. The activities show significant negative deviations from Raoult’s law. The compositions of the spinel solid solutions in equilibrium with CuO + CuFeO2 and Cu + CuFeO2 were obtained from chemical analysis of the solid solution after magnetic separation. The oxygen potential of the three-phase mixture Cu + CuFeO2 + Fe3O4(spinel s.s.) was determined by a solid oxide galvanic cell. From these measurements a complete phase diagram and consistent thermodynamic data on the ternary condensed phases, CuFeO2 and CuFeO2O4, were obtained. An analysis of the free energy of mixing of the spinel solid solution furnished information on the distribution of cations and their valencies between the tetrahedral and octahedral sites of the spinel lattice, which is consistent with X-ray diffraction, magnetic and Seebeck coefficient measurements.
Resumo:
Activities of FeCr2O4 in the spinel solid solutions Fe X Mg1−X Cr2O4 (0
Resumo:
The generalizations of the Onsager model for the radial boundary layer and the Carrier-Maslen model for the end-cap axial boundary layer in a high-speed rotating cylinder are formulated for studying the secondary gas flow due to wall heating and due to insertion of mass, momentum and energy into the cylinder. The generalizations have wider applicability than the original Onsager and Carrier-Maslen models, because they are not restricted to the limit A >> 1, though they are restricted to the limit R e >> 1 and a high-aspect-ratio cylinder whose length/diameter ratio is large. Here, the stratification parameter A = root m Omega(2)R(2)/2k(B)T). This parameter A is the ratio of the peripheral speed, Omega R, to the most probable molecular speed, root 2k(B)T/m, the Reynolds number Re = rho w Omega R(2)/mu, where m is the molecular mass, Omega and R are the rotational speed and radius of the cylinder, k(B) is the Boltzmann constant, T is the gas temperature, rho(w) is the gas density at wall, and mu is the gas viscosity. In the case of wall forcing, analytical solutions are obtained for the sixth-order generalized Onsager equations for the master potential, and for the fourth-order generalized Carrier-Maslen equation for the velocity potential. For the case of mass/momentum/energy insertion into the flow, the separation-of-variables procedure is used, and the appropriate homogeneous boundary conditions are specified so that the linear operators in the axial and radial directions are self-adjoint. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order and second-order in the radial and axial directions for the Onsager equation, and fourth-order and second-order in the axial and radial directions for the Carrier-Maslen equation) are determined. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations. The comparison reveals that the boundary conditions in the simulations and analysis have to be matched with care. The commonly used `diffuse reflection' boundary conditions at solid walls in DSMC simulations result in a non-zero slip velocity as well as a `temperature slip' (gas temperature at the wall is different from wall temperature). These have to be incorporated in the analysis in order to make quantitative predictions. In the case of mass/momentum/energy sources within the flow, it is necessary to ensure that the homogeneous boundary conditions are accurately satisfied in the simulations. When these precautions are taken, there is excellent agreement between analysis and simulations, to within 10 %, even when the stratification parameter is as low as 0.707, the Reynolds number is as low as 100 and the aspect ratio (length/diameter) of the cylinder is as low as 2, and the secondary flow velocity is as high as 0.2 times the maximum base flow velocity. The predictions of the generalized models are also significantly better than those of the original Onsager and Carrier-Maslen models, which are restricted to thin boundary layers in the limit of high stratification parameter.