17 resultados para The East

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The information on altitude distribution of aerosols in the atmosphere is essential in assessing the impact of aerosol warming on thermal structure and stability of the atmosphere.In addition, aerosol altitude distribution is needed to address complex problems such as the radiative interaction of aerosols in the presence of clouds. With this objective,an extensive, multi-institutional and multi-platform field experiment (ICARB-Integrated Campaign for Aerosols, gases and Radiation Budget) was carried out under the Geosphere Biosphere Programme of the Indian Space Research Organization (ISRO-GBP) over continental India and adjoining oceans during March to May 2006. Here, we present airborne LIDAR measurements carried out over the east Coast of the India during the ICARB field campaign. An increase in aerosol extinction (scattering + absorption) was observed from the surface upwards with a maximum around 2 to 4 km. Aerosol extinction at higher atmospheric layers (>2 km) was two to three times larger compared to that of the surface. A large fraction (75-85%) of aerosol column optical depth was contributed by aerosols located above 1 km. The aerosol layer heights (defined in this paper as the height at which the gradient in extinction coefficient changes sign) showed a gradual decrease with an increase in the offshore distance. A large fraction (60-75%) of aerosol was found located above clouds indicating enhanced aerosol absorption above clouds. Our study implies that a detailed statistical evaluation of the temporal frequency and spatial extent of elevated aerosol layers is necessary to assess their significance to the climate. This is feasible using data from space-borne lidars such as CALIPSO,which fly in formation with other satellites like MODIS AQUA and MISR, as part of the A-Train constellation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the East African Rift System (EARS) is an archetype continental rift, the forces driving its evolution remain debated. Some contend buoyancy forces arising from gravitational potential energy (GPE) gradients within the lithosphere drive rifting. Others argue for a major role of the diverging mantle flow associated with the African Superplume. Here we quantify the forces driving present-day continental rifting in East Africa by (1) solving the depth averaged 3-D force balance equations for 3-D deviatoric stress associated with GPE, (2) inverting for a stress field boundary condition that we interpret as originating from large-scale mantle tractions, (3) calculating dynamic velocities due to lithospheric buoyancy forces, lateral viscosity variations, and velocity boundary conditions, and (4) calculating dynamic velocities that result from the stress response of horizontal mantle tractions acting on a viscous lithosphere in Africa and surroundings. We find deviatoric stress associated with lithospheric GPE gradients are similar to 8-20 MPa in EARS, and the minimum deviatoric stress resulting from basal shear is similar to 1.6 MPa along the EARS. Our dynamic velocity calculations confirm that a force contribution from GPE gradients alone is sufficient to drive Nubia-Somalia divergence and that additional forcing from horizontal mantle tractions overestimates surface kinematics. Stresses from GPE gradients appear sufficient to sustain present-day rifting in East Africa; however, they are lower than the vertically integrated strength of the lithosphere along most of the EARS. This indicates additional processes are required to initiate rupture of continental lithosphere, but once it is initiated, lithospheric buoyancy forces are enough to maintain rifting.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Quantitative estimates of the vertical structure and the spatial gradients of aerosol extinction coefficients have been made from airborne lidar measurements across the coastline into offshore oceanic regions along the east and west coasts of India. The vertical structure revealed the presence of strong, elevated aerosol layers in the altitude region of similar to 2-4 km, well above the atmospheric boundary layer (ABL). Horizontal gradients also showed a vertical structure, being sharp with the e(-1) scaling distance (D-0H) as small as similar to 150 km in the well-mixed regions mostly under the influence of local source effects. Above the ABL, where local effects are subdued, the gradients were much shallower (similar to 600-800 km); nevertheless, they were steep compared to the value of similar to 1500-2500 km reported for columnar AOD during winter. The gradients of these elevated layers were steeper over the east coast of India than over the west coast. Near-simultaneous radio sonde (Vaisala, Inc., Finland) ascents made over the northern Bay of Bengal showed the presence of convectively unstable regions, first from surface to similar to 750-1000 m and the other extending from 1750 to 3000 m separated by a stable region in between. These can act as a conduit for the advection of aerosols and favor the transport of continental aerosols in the higher levels (> 2 km) into the oceans without entering the marine boundary layer below. Large spatial gradient in aerosol optical and hence radiative impacts between the coastal landmass and the adjacent oceans within a short distance of < 300 km (even at an altitude of 3 km) during summer and the premonsoon is of significance to the regional climate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The low-level jet (LLJ) over the Indian region, which is most prominent during the monsoon (June-September) season, has been studied with a general circulation model (GCM). The role of African orography in modulating this jet is the focus of this article. The presence o African orography intensifies the cross-equatorial flow. Contrary to previous modelling Studies we find that cross-equatorial flow occurs even in the absence of African orography, though this flow is muc weaker even when the Indian monsoon rainfall is high. However, the location of the meridional jet near the equator in the Somali region is linked to the Indian monsoon rainfall rather than to the land-sea contrast over Somalia. Also, the presence of African orography, and not the strength of the Indian monsoon, controls the vertical extent of the equatorial meridional wind. In an aqua-planet simulation, the cross-equatorial flow occurs about 30 to the west of the rainfall maximum. Thus, the longitudinal location of the equatorial Somali jet depends upon the occurrence of monsoon heating, but the vertical structure of the jet is on account of the western boundary current in the atmosphere due to the East African highlands under the influence of monsoonal heat source.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An overview of the problem of orographic effects on the southwest monsoon using the contributions of all the available analytical and numerical models is attempted. A quasi-geostrophic model is applied to deduce the effect of the topographic complex on the Indian peninsula. This model suggests that the southward bending of the low-level isobars on the peninsula can be ascribed to the topographically-induced southward velocity. This southward velocity triggers a Rossby wave to the east of the peninsula which is manifested as a trough on the southern Bay of Bengal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Evaluation and design of shore protection works in the case of tsunamis assumes considerable importance in view of the impact it had in the recent tsunami of 26th December 2004 in India and other countries in Asia. The fact that there are no proper guidelines have made in the matters worse and resulted in the magnitude of damage that occurred. Survey of the damages indicated that the scour as a result of high velocities is one of the prime reasons for damages in the case of simple structures. It is revealed that sea walls in some cases have been helpful to minimize the damages. The objective of this paper is to suggest that design of shore line protection systems using expected wave heights that get generated and use of flexible systems such as geocells is likely to give a better protection. The protection systems can be designed to withstand the wave forces that corresponding to different probabilities of incidence. A design approach of geocells protection system is suggested and illustrated with reference to the data of wave heights in the east coast of India.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

According to recent estimates, the annual total continental runoff into the Bay of Bengal (BoB) is about 2950 km 3, which is more than half that into the entire tropical Indian Ocean (IO). Here we use climatological observations to trace the seasonal pathways of near surface freshwater from BoB runoff and Indonesian Throughflow (ITF) by removing the net contribution from precipitation minus evaporation. North of 20 degrees S, the amount of freshwater from BoB runoff and ITF changes with season in a manner consistent with surface currents from drifters. BoB runoff reaches remote regions of the Arabian Sea; it also crosses the equator in the east to join the ITF. This freshwater subsequently flows west across the southern tropical IO in the South Equatorial Current.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Satellite-derived chlorophyll a concentration (chl a) maps show three regions with high chl a in the Bay of Bengal. First among these is close to the coast, particularly off river mouths, with high values coinciding with the season of peak discharge; second is in the southwestern bay during the northeast monsoon, which is forced by local Ekman pumping; and the third is to the east of Sri Lanka in response to the summer monsoon winds. Chlorophyll-rich water from the mouths of rivers flows either along the coast or in an offshore direction, up to several hundred kilometers, depending on the prevailing ocean current pattern. The Irrawady River plume flows toward offshore and then turns northwestward during October–December, but it flows along the coast into the Andaman Sea for the rest of the year. From the Ganga-Brahmaputra river mouth, chl a–rich water flows directly southward into the open bay during spring but along the Indian coast during summer and winter. Along the Indian coast, the flow of chl a–rich water is determined by the East India Coastal Current (EICC). Whenever the EICC meanders off the Indian coast, it leads to an offshore outbreak of chl a–rich water from the coastal region into open ocean. The EICC as well as open ocean circulation in the bay is made up of several eddies, and these eddies show relatively higher chl a. Eddies near the coast, however, can often have higher chl a because of advection from the coastal region rather than generation within the eddy itself. The bay experiences several cyclones in a year, most of them occurring during October–November. These cyclones cause a drop in the sea surface temperature, a dip in the sea level, and a local increase in chl a. The impact of a cyclone is weaker in the northern part of the bay because of stronger stratification compared to the southern parts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Bay of Bengal, a semienclosed tropical basin that comes under the influence of monsoonal wind and freshwater influx, is distinguished by a strongly stratified surface layer and a seasonally reversing circulation. We discuss characteristics of these features in the western Bay during the northeast monsoon, when the East India Coastal Current (EICC) flows southward, using hydrographic data collected during December 1991. Vertical profiles show uniform temperature and salinity in a homogeneous surface layer, on average, 25 m deep but shallower northward and coastward. The halocline, immediately below, is approximately 50 m thick; salinity changes by approximately 3 parts per thousand. About two thirds of the profiles show temperature inversions in this layer. Salinity below the halocline hardly changes, and stratification is predominantly due to temperature variation, The halocline is noticeably better developed and the surface homogeneous layer is thinner in a low-salinity plume that hugs the coastline along the entire east coast of India, The plume is, on average, 50 km wide, with isohalines sloping down toward the coast. Most prominent in the geostrophic velocity field is the equatorward EICC. Its transport north of about 13 degrees N, computed with 1000 dbar as the level of reference, varies between 2.6 and 7.1 x 10(6) m(3) s(-1); just south of this latitude, a northwestward flow from offshore recurves and merges with the coastal current. At the southern end of the region surveyed, the transport is 7.7 x 10(6) m(3) s(-1). Recent model studies lead us to conclude that the EICC during the northeast monsoon is driven by winds along the east coast of India and Ekman pumping in the interior bay. In the south, Ekman pumping over the southwestern bay is responsible for the northwestward flow that merges with the EICC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For over a century, the term break has been used for spells in which the rainfall over the Indian monsoon zone is interrupted. The phenomenon of 'break monsoon' is of great interest because long intense breaks are often associated with poor monsoon seasons. Such breaks have distinct circulation characteristics (heat trough type circulation) and have a large impact on rainfed agriculture. Although interruption of the monsoon rainfall is considered to be the most important feature of the break monsoon, traditionally breaks have been identified on the basis of the surface pressure and wind patterns over the Indian region. We have defined breaks (and active spells) on the basis of rainfall over the monsoon zone. The rainfall criteria are chosen so as to ensure a large overlap with the traditional breaks documented by Ramamurthy (1969) and De et al (1998). We have identified these rainbreaks for 1901-89. We have also identified active spells on the basis of rainfall over the Indian monsoon zone. We have shown that the all-India summer monsoon rainfall is significantly negatively correlated with the number of rainbreak days (correlation coefficient -0.56) and significantly positively correlated with the number of active days (correlation coefficient 0.47). Thus the interannual variation of the all-India summer monsoon rainfall is shown to be related to the number of days of rainbreaks and active spells identified here. There have been several studies of breaks (and also active spells in several cases) identified on the basis of different criteria over regions differing in spatial scales (e.g., Webster et al 1998; Krishnan et al 2000; Goswami and Mohan 2000; and Annamalai and Slingo 2001). We find that there is considerable overlap between the rainbreaks we have identified and breaks based on the traditional definition. There is some overlap with the breaks identified by Krishnan et al (2000) but little overlap with breaks identified by Webster et al (1998). Further, there are three or four active-break cycles in a season according to Webster et al (1998) which implies a time scale of about 40 days for which Goswami and Mohan (2000), and Annamalai and Slingo'(2001) have studied breaks and active minus break fluctuations. On the other hand, neither the traditional breaks (Ramamurthy 1969; and De et al 1998) nor the rainbreaks occur every year. This suggests that the 'breaks' in these studies axe weak spells of the intraseasonal variation of the monsoon, which occur every year. We have derived the OLR and circulation patterns associated with rainbreaks and active spells and compared them with the patterns associated with breaks/active minus break spells from these studies. Inspite of differences in the patterns over the Indian region, there is one feature which is seen in the OLR anomaly patterns of breaks identified on the basis of different criteria as well as the rainbreaks identified in this paper viz., a quadrapole over the Asia-west Pacific region arising from anomalies opposite (same) in sign to those over the Indian region occurring over the equatorial Indian Ocean and northern tropical (equatorial) parts of the west Pacific. Thus it appears that this quadrapole is a basic feature of weak spells of the intraseasonal,variation over the Asia-west Pacific region. Since the rainbreaks are intense weak spells, this basic feature is also seen in the composite patterns of these breaks. We find that rainbreaks (active spells) are also associated with negative (positive) anomalies over a part of the cast Pacific suggesting that the convection over the Indian region is linked to that over the east Pacific not only on the interannual scale (as evinced by the link between the Indian summer monsoon rainfall and ENSO) but on the intraseasonal scale as well.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Indian Ocean earthquake of 26 December 2004 led to significant ground deformation in the Andaman and Nicobar region, accounting for ~800 km of the rupture. Part of this article deals with coseismic changes along these islands, observable from coastal morphology, biological indicators, and Global Positioning System (GPS) data. Our studies indicate that the islands south of 10° N latitude coseismically subsided by 1–1.5 m, both on their eastern and western margins, whereas those to the north showed a mixed response. The western margin of the Middle Andaman emerged by >1 m, and the eastern margin submerged by the same amount. In the North Andaman, both western and eastern margins emerged by >1 m. We also assess the pattern of long-term deformation (uplift/subsidence) and attempt to reconstruct earthquake/tsunami history, with the available data. Geological evidence for past submergence includes dead mangrove vegetation dating to 740 ± 100 yr B.P., near Port Blair and peat layers at 2–4 m and 10–15 m depths observed in core samples from nearby locations. Preliminary paleoseismological/tsunami evidence from the Andaman and Nicobar region and from the east coast of India, suggest at least one predecessor for the 2004 earthquake 900–1000 years ago. The history of earthquakes, although incomplete at this stage, seems to imply that the 2004-type earthquakes are infrequent and follow variable intervals

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Spatial information at the landscape scale is extremely important for conservation planning, especially in the case of long-ranging vertebrates. The biodiversity-rich Anamalai hill ranges in the Western Ghats of southern India hold a viable population for the long-term conservation of the Asian elephant. Through rapid but extensive field surveys we mapped elephant habitat, corridors, vegetation and land-use patterns, estimated the elephant population density and structure, and assessed elephant-human conflict across this landscape. GIS and remote sensing analyses indicate that elephants are distributed among three blocks over a total area of about 4600 km(2). Approximately 92% remains contiguous because of four corridors; however, under 4000 km2 of this area may be effectively used by elephants. Nine landscape elements were identified, including five natural vegetation types, of which tropical moist deciduous forest is dominant. Population density assessed through the dung count method using line transects covering 275 km of walk across the effective elephant habitat of the landscape yielded a mean density of 1.1 (95% Cl = 0.99-1.2) elephant/km(2). Population structure from direct sighting of elephants showed that adult male elephants constitute just 2.9% and adult females 42.3% of the population with the rest being subadults (27.4%), juveniles (16%) and calves (11.4%). Sex ratios show an increasing skew toward females from juvenile (1:1.8) to sub-adult (1:2.4) and adult (1:14.7) indicating higher mortality of sub-adult and adult males that is most likely due to historical poaching for ivory. A rapid questionnaire survey and secondary data on elephant-human conflict from forest department records reveals that villages in and around the forest divisions on the eastern side of landscape experience higher levels of elephant-human conflict than those on the western side; this seems to relate to a greater degree of habitat fragmentation and percentage farmers cultivating annual crops in the east. We provide several recommendations that could help maintain population viability and reduce elephant-human conflict of the Anamalai elephant landscape. (C) 2013 Deutsche Gesellschaft far Saugetierkunde. Published by Elsevier GmbH. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have developed a one-way nested Indian Ocean regional model. The model combines the National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory's (GFDL) Modular Ocean Model (MOM4p1) at global climate model resolution (nominally one degree), and a regional Indian Ocean MOM4p1 configuration with 25 km horizontal resolution and 1 m vertical resolution near the surface. Inter-annual global simulations with Coordinated Ocean-Ice Reference Experiments (CORE-II) surface forcing over years 1992-2005 provide surface boundary conditions. We show that relative to the global simulation, (i) biases in upper ocean temperature, salinity and mixed layer depth are reduced, (ii) sea surface height and upper ocean circulation are closer to observations, and (iii) improvements in model simulation can be attributed to refined resolution, more realistic topography and inclusion of seasonal river runoff. Notably, the surface salinity bias is reduced to less than 0.1 psu over the Bay of Bengal using relatively weak restoring to observations, and the model simulates the strong, shallow halocline often observed in the North Bay of Bengal. There is marked improvement in subsurface salinity and temperature, as well as mixed layer depth in the Bay of Bengal. Major seasonal signatures in observed sea surface height anomaly in the tropical Indian Ocean, including the coastal waveguide around the Indian peninsula, are simulated with great fidelity. The use of realistic topography and seasonal river runoff brings the three dimensional structure of the East India Coastal Current and West India Coastal Current much closer to observations. As a result, the incursion of low salinity Bay of Bengal water into the southeastern Arabian Sea is more realistic. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study reports characteristics of inertia-gravity waves (IGWs) in the atmospheric boundary layer during the passage of Tropical Cylone-03B, using the Doppler Sound Detection and Ranging (SODAR) observations at the Indian tropical station of Gadanki (13.45 degrees N, 79.2 degrees E; near the east coast of India). Wavelet analysis of horizontal winds indicates significant wave motion (60h) near the characteristic inertial period. The hodograph analysis of the filtered winds shows an anti-cyclonic turning of horizontal wind with height and time, indicating the presence of IGW. This study finds important implications in boundary layer dynamics during the passage of tropical cyclones.