10 resultados para The Canadian Bank of Commerce
em Indian Institute of Science - Bangalore - Índia
Resumo:
An experimental investigation dealing with the influence of stress path on the shear behaviour of a layered soil prepared in the laboratory is described. Specimens trimmed in vertical and horizontal directions have been sheared under three different stress paths in compression and extension tests. Either in compression or extension, the stress–strain behaviour of the specimens with both orientations was apparently the same, although the volume change behaviour was different. The effective stress parameters C′ and ′ were found to be unique and independent of the stress path and two principal orientations. However, the values of ′ in extension tests were 6–7° higher than those in compression tests.
Resumo:
For resonant column tests conducted in the flexure mode of excitation, a new methodology has been proposed to find the elastic modulus and associated axial strain of a cylindrical sample. The proposed method is an improvement over the existing one, and it does not require the assumption of either the mode shape or zero bending moment condition at the top of the sample. A stepwise procedure is given to perform the necessary calculations. From a number of resonant column experiments on aluminum bars and dry sand samples, it has been observed that the present method as compared with the one available in literature provides approximately (i) 5.9%-7.3% higher values of the elastic modulus and (ii) 6.5%-7.3% higher values of the associated axial strains.
Resumo:
The permeability index Ck, similar to the compression index, is the slope of the void ratio – coefficient of permeability relationship. Literature shows that, in general, for sensitive clays it can be related to initial void ratio by Ck = 0.5e0. The possibility of obtaining such a relationship for Cochin marine clays in terms of liquid limit void ratio is indicated in this paper. Analysis of permeability behaviour of Cochin marine clays and the test results available in published literature using generalized state parameter approach show that, in principle, these forms of equations for the permeability index are tenable, even though they were obtained based on experimental observation alone.
Resumo:
The reported presence in marine clays and the recognized role of polysaccharide as a bonding agent provided the motivation to examine the role of starch polysaccharide in the remoulded properties of nonswelling (kaolinite) and swelling (bentonite) groups of clays. The starch polysaccharide belongs to a group of naturally occurring, large-sized organic molecules (termed polymers) and is built up by extensive repetition of simple chemical units called repeat units. The results of the study indicate that the impact of the starch polysaccharide on the remoulded properties of clays is dependent on the mineralogy of the clays. On addition to bentonite clay, the immensely large number of segments (repeat units) of the starch polysaccharide create several polymer segment - clay surface bonds that cause extensive aggregation of the bentonite units layers. The aggregation of the bentonite unit layers greatly curtails the available surface area of the clay mineral for diffuse ion layer formation. The reduction in diffuse ion layer thickness markedly lowers the consistency limits and vane shear strength of the bentonite clay. On addition to kaolinite, the numerous polymer segment - clay surface bonds enhance the tendency of the kaolinite particles to flocculate. The enhanced particle flocculation is responsible apparently for a small to moderate increase in the liquid limit and remoulded undrained strength of the nonswelling clay.
Resumo:
An oscillating droplet method combined with electromagnetic levitation technique has been applied to determine the surface tensions of liquid nickel sulphur alloys as a function of the temperature and composition. The natural frequency of the oscillating droplet is evaluated using a Fourier analyser, and the influence of magnetic field strength on the surface tension was considered. Furthermore, the applicability of Butler's equation and subregular solution model for the surface was shown to predict the surface tension of the systems containing the surface active elements.
Resumo:
Solid oxide galvanic cells using CaO-ZrO2 and CaO-ZrO2 in combination with YO1.5-ThO2 as electrolyte were used to determine the free energy of formation of hercynite from 750–1600°C. The formation reaction is 2Fe(s,1) + O2(g) + Al2O3(α) = 2FeO.Al2O3(s)for which ΔG° = − 139,790 + 32.83T (±300) cals. (750–1536°C) ΔG° = − 146,390 + 36.48T (±300) cals. (1536–1700°C)These measurements can be used to resolve the discrepancies that exist in published thermochemical data, and provide an accurate oxygen potential standard for calibrating and assessing the performance of oxygen probes under steelmaking conditions.
Resumo:
A nonlinear stochastic filtering scheme based on a Gaussian sum representation of the filtering density and an annealing-type iterative update, which is additive and uses an artificial diffusion parameter, is proposed. The additive nature of the update relieves the problem of weight collapse often encountered with filters employing weighted particle based empirical approximation to the filtering density. The proposed Monte Carlo filter bank conforms in structure to the parent nonlinear filtering (Kushner-Stratonovich) equation and possesses excellent mixing properties enabling adequate exploration of the phase space of the state vector. The performance of the filter bank, presently assessed against a few carefully chosen numerical examples, provide ample evidence of its remarkable performance in terms of filter convergence and estimation accuracy vis-a-vis most other competing filters especially in higher dimensional dynamic system identification problems including cases that may demand estimating relatively minor variations in the parameter values from their reference states. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Due to its complex honeycomb structure, the numerical modeling of the geocell has always been a big challenge. Generally, the equivalent composite approach is used to model the geocells. In the equivalent composite approach, the geocellsoil composite is treated as the soil layer with improved strength and stiffness values. Though this approach is very simple, it is unrealistic to model the geocells as the soil layer. This paper presents a more realistic approach of modeling the geocells in three-dimensional (3D) framework by considering the actual curvature of the geocell pocket. A square footing resting on geocell reinforced soft clay bed was modeled using the ``fast Lagrangian analysis of continua in 3D'' (FLAC(3D)) finite difference package. Three different material models, namely modified Cam-clay, Mohr-Coulomb, and linear elastic were used to simulate the behaviour of foundation soil, infill soil and the geocell, respectively. It was found that the geocells distribute the load laterally to the wider area below the footing as compared to the unreinforced case. More than 50% reduction in the stress was observed in the clay bed in the presence of geocells. In addition to geocells, two other cases, namely, only geogrid and geocell with additional basal geogrid cases were also simulated. The numerical model was systematically validated with the results of the physical model tests. Using the validated numerical model, parametric studies were conducted to evaluate the influence of various geocell properties on the performance of reinforced clay beds.