2 resultados para Thau Lagoon
em Indian Institute of Science - Bangalore - Índia
Resumo:
Coastal lagoons are complex ecosystems exhibiting a high degree of non-linearity in the distribution and exchange of nutrients dissolved in the water column due to their spatio-temporal characteristics. This factor has a direct influence on the concentrations of chlorophyll-a, an indicator of the primary productivity in the water bodies as lakes and lagoons. Moreover the seasonal variability in the characteristics of large-scale basins further contributes to the uncertainties in the data on the physico-chemical and biological characteristics of the lagoons. Considering the above, modelling the distributions of the nutrients with respect to the chlorophyll-concentrations, hence requires an effective approach which will appropriately account for the non-linearity of the ecosystem as well as the uncertainties in the available data. In the present investigation, fuzzy logic was used to develop a new model of the primary production for Pulicat lagoon, Southeast coast of India. Multiple regression analysis revealed that the concentrations of chlorophyll-a in the lagoon was highly influenced by the dissolved concentrations of nitrate, nitrites and phosphorous to different extents over different seasons and years. A high degree of agreement was obtained between the actual field values and those predicted by the new fuzzy model (d = 0.881 to 0.788) for the years 2005 and 2006, illustrating the efficiency of the model in predicting the values of chlorophyll-a in the lagoon.
Resumo:
Manmade waterbodies have traditionally been used for domestic and irrigation purposes. Unplanned urbanization and ad-hoc approaches have led to these waterbodies receiving untreated sewage. This enriches and eutrophies the waterbody. A physicochemical and biological analysis of sewage-fed Varthur Lake in Bangalore was carried out and its treatment capabilities in terms of BOD removal, nutrient assimilation and self-remediation were assessed. Anaerobic conditions (0 mg/L) prevail at the inlet which improves towards the outlets due to algal aeration. This removed > 50% BOD in the monsoon season but was inhibited by floating macrophytes in all other seasons. Alkalinity, TDS, conductivity and hardness values were higher when compared to earlier studies. This study shows the lake behaves as an anaerobic~aerobic lagoon with a residence time of 4.8 d treating the wastewater to a considerable extent. Further research is required to optimise the system performance.