37 resultados para Terraces (Geology)
em Indian Institute of Science - Bangalore - Índia
Resumo:
Geologic evidence along the northern part of the 2004 Aceh-Andaman rupture suggests that this region generated as many as five tsunamis in the prior 2000years. We identify this evidence by drawing analogy with geologic records of land-level change and the tsunami in 2004 from the Andaman and Nicobar Islands (A&N). These analogs include subsided mangrove swamps, uplifted coral terraces, liquefaction, and organic soils coated by sand and coral rubble. The pre-2004 evidence varies in potency, and materials dated provide limiting ages on inferred tsunamis. The earliest tsunamis occurred between the second and sixth centuries A.D., evidenced by coral debris of the southern Car Nicobar Island. A subsequent tsunami, probably in the range A.D. 770-1040, is inferred from deposits both in A&N and on the Indian subcontinent. It is the strongest candidate for a 2004-caliber earthquake in the past 2000years. A&N also contain tsunami deposits from A.D. 1250 to 1450 that probably match those previously reported from Sumatra and Thailand, and which likely date to the 1390s or 1450s if correlated with well-dated coral uplift offshore Sumatra. Thus, age data from A&N suggest that within the uncertainties in estimating relative sizes of paleo-earthquakes and tsunamis, the 1000year interval can be divided in half by the earthquake or earthquakes of A.D. 1250-1450 of magnitude >8.0 and consequent tsunamis. Unlike the transoceanic tsunamis generated by full or partial rupture of the subduction interface, the A&N geology further provides evidence for the smaller-sized historical tsunamis of 1762 and 1881, which may have been damaging locally.
Resumo:
The 2004 earthquake left several traces of coseismic land deformation and tsunami deposits, both on the islands along the plate boundary and distant shores of the Indian Ocean rim countries. Researchers are now exploring these sites to develop a chronology of past events. Where the coastal regions are also inundated by storm surges, there is an additional challenge to discriminate between the deposits formed by these two processes. Paleo-tsunami research relies largely on finding deposits where preservation potential is high and storm surge origin can be excluded. During the past decade of our work along the Andaman and Nicobar Islands and the east coast of India, we have observed that the 2004 tsunami deposits are best preserved in lagoons, inland streams and also on elevated terraces. Chronological evidence for older events obtained from such sites is better correlated with those from Thailand, Sri Lanka and Indonesia, reiterating their usefulness in tsunami geology studies. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Given the lack of proper constraints in understanding earthquake mechanisms in the cratonic interiors and the general absence of good quality database, here we reassess the seismic hazard in the province of Kerala, a part of the aEuro cent stable continental interioraEuro cent, based on an improved historical and instrumental database. The temporal pattern of the current seismicity suggests that > 60% of the microtremors in Kerala occurs with a time lag after the peak rainfall, indicating that hydroseismicity may be a plausible model to explain the low-level seismicity in this region. Further, an increment in overall seismicity rate in the region in the recent years is explained as due to increased anthropogenic activities, which includes changes in hydrological pathways as a consequence of rapid landscape changes. Our analyses of the historical database eliminate a few events that are ascribed to this region; this exercise has also led to identification of a few events, not previously noted. The improved historical database essentially suggests that the central midland region is more prone to seismic activity compared to other parts of Kerala. This region appears to have generated larger number of significant earthquakes; the most prominent being the multiple events (doublets) of 1856 and 1953, whose magnitudes are comparable to that of the 2000/2001 (central Kerala) events. Occurrences of these historical events and the recent earthquakes, and the local geology indicative of pervasive faulting as shown by widely distributed pseudotachylite veins suggest that the NNW-SSE trending faults in central midland Kerala may host discrete potentially active sources that may be capable of generating light to moderate size earthquakes. The frequency of earthquakes in central Kerala evident from the historical database requires that the seismic codes stipulated for this region are made mandatory.
Resumo:
Site-specific geotechnical data are always random and variable in space. In the present study, a procedure for quantifying the variability in geotechnical characterization and design parameters is discussed using the site-specific cone tip resistance data (qc) obtained from static cone penetration test (SCPT). The parameters for the spatial variability modeling of geotechnical parameters i.e. (i) existing trend function in the in situ qc data; (ii) second moment statistics i.e. analysis of mean, variance, and auto-correlation structure of the soil strength and stiffness parameters; and (iii) inputs from the spatial correlation analysis, are utilized in the numerical modeling procedures using the finite difference numerical code FLAC 5.0. The influence of consideration of spatially variable soil parameters on the reliability-based geotechnical deign is studied for the two cases i.e. (a) bearing capacity analysis of a shallow foundation resting on a clayey soil, and (b) analysis of stability and deformation pattern of a cohesive-frictional soil slope. The study highlights the procedure for conducting a site-specific study using field test data such as SCPT in geotechnical analysis and demonstrates that a few additional computations involving soil variability provide a better insight into the role of variability in designs.
Resumo:
The first finding of low-temperature eclogites from the Indochina region is reported. The eclogites occur along the Song Ma Suture zone in northern Vietnam, which is widely regarded as the boundary between the South China and Indochina cratons. The major lithology of the area is pelitic schist that contains garnet and phengite with or without biotite, chloritoid, staurolite and kyanite, and which encloses blocks and lenses of eclogite and amphibolite. The eclogites commonly consist of garnet, omphacite, phengite, rutile, quartz and/or epidote with secondary barroisite. Omphacite is commonly surrounded by a symplectite of Na-poor omphacite and Na-rich plagioclase. In highly retrograded domains, diopside + tremolite + plagioclase symplectites replace the primary phases. Estimated peak-pressure metamorphic conditions based on isochemical phase diagrams for the eclogites are 2.1-2.2 GPa and 600-620 degrees C, even though thermobarometric results yield higher pressure and temperature conditions (2.6-2.8 GPa and 620-680 degrees C). The eclogites underwent a clockwise P-T trajectory with a post-peak-pressure increase of temperature to a maximum of > 750 degrees C at 1.7 GPa and a subsequent cooling during decompression to 650 degrees C and 1.3 GPa, which was followed by additional cooling before close-to-isothermal decompression to similar to 530 degrees C at 0.5 GPa. The surrounding pelitic schist (garnet-chloritoid-phengite) records similar metamorphic conditions (580-600 degrees C at 1.9-2.3 GPa) and a monazite chemical age of 243 +/- 4 Ma. A few monazite inclusions within garnet and the cores of some zoned monazite in garnet-phengite schist record an older thermal event (424 +/- 15 Ma). The present results indicate that the Indochina craton was deeply (> 70 km) subducted beneath the South China craton in the Triassic. The Silurian cores of monazite grains may relate to an older non-collisional event in the Indochina craton.
Resumo:
In recent years, spatial variability modeling of soil parameters using random field theory has gained distinct importance in geotechnical analysis. In the present Study, commercially available finite difference numerical code FLAC 5.0 is used for modeling the permeability parameter as spatially correlated log-normally distributed random variable and its influence on the steady state seepage flow and on the slope stability analysis are studied. Considering the case of a 5.0 m high cohesive-frictional soil slope of 30 degrees, a range of coefficients of variation (CoV%) from 60 to 90% in the permeability Values, and taking different values of correlation distance in the range of 0.5-15 m, parametric studies, using Monte Carlo simulations, are performed to study the following three aspects, i.e., (i) effect ostochastic soil permeability on the statistics of seepage flow in comparison to the analytic (Dupuit's) solution available for the uniformly constant permeability property; (ii) strain and deformation pattern, and (iii) stability of the given slope assessed in terms of factor of safety (FS). The results obtained in this study are useful to understand the role of permeability variations in slope stability analysis under different slope conditions and material properties. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Kachchh region of Gujarat, India bore the brunt of a disastrous earthquake of magnitude M-w=7.6 that occurred on January 26, 2001. The major cause of failure of various structures including earthen dams was noted to be the presence of liquefiable alluvium in the foundation soil. Results of back-analysis of failures of Chang, Tappar, Kaswati and Rudramata earth dams using pseudo-static limit equilibrium approach presented in this paper confirm that the presence of liquefiable layer contributed to lesser factors of safety leading to a base type of failure that was also observed in the field. Following the earthquake, earth dams have been rehabilitated by the concerned authority and it is imperative that the reconstructed sections of earth dams be reanalyzed. It is also increasingly realized that risk assessment of dams in view of the large-scale investment made and probabilistic analysis is necessary. In this study, it is demonstrated that the probabilistic approach when used in conjunction with deterministic approach helps in providing a rational solution for quantification of safety of the dam and in the estimation of risk associated with the dam construction. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A method for total risk analysis of embankment dams under earthquake conditions is discussed and applied to the selected embankment dams, i.e., Chang, Tapar, Rudramata, and Kaswati located in the Kachchh region of Gujarat, India, to obtain the seismic hazard rating of the dam site and the risk rating of the structures. Based on the results of the total risk analysis of the dams, coupled non-linear dynamic numerical analyses of the dam sections are performed using acceleration time history record of the Bhuj (India) earthquake as well as five other major earthquakes recorded worldwide. The objective of doing so is to perform the numerical analysis of the dams for the range of amplitude, frequency content and time duration of input motions. The deformations calculated from the numerical analyses are also compared with other approaches available in literature, viz, Makdisi and Seed (1978) approach, Jansen's approach (1990), Swaisgood's method (1995), Bureau's method (1997). Singh et al. approach (2007), and Saygili and Rathje approach (2008) and the results are utilized to foresee the stability of dams in future earthquake scenario. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We investigate the chemical weathering processes and fluxes in a small experimental watershed (SEW) through a modelling approach. The study site is the Mule Hole SEW developed on a gneissic basement located in the climatic gradient of the Western Ghats, South India. The model couples a lumped hydrological model simulating the water budget at the watershed scale to the WITCH model estimating the dissolution/precipitation rates of minerals using laboratory kinetic laws. Forcing functions and parameters of the simulation are defined by the field data. The coupled model is calibrated with stream and groundwater compositions through the testing of a large range of smectite solubility and abundance in the soil horizons. We found that, despite the low abundance of smectite in the dominant soil type of the watershed (4 vol.%), their net dissolution provides 75% of the export of dissolved silica, while primary silicate mineral dissolution releases only 15% of this flux. Overall, smectites (modelled as montmorillonites) are not stable under the present day climatic conditions. Furthermore, the dissolution of trace carbonates in the saprolitic horizon provides 50% of the calcium export at the watershed scale. Modelling results show the contrasted behavior of the two main soil types of the watershed: red soils (88% of the surface) are provider of calcium, while black soils (smectite-rich and characterized by a lower drainage) consumes calcium through overall carbonate precipitation. Our model results stress the key role played by minor/accessory minerals and by the thermodynamic properties of smectite minerals, and by the drainage of the weathering profiles on the weathering budget of a tropical watershed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Ultrahigh-temperature (UHT) granulites of the central Highland Complex, Sri Lanka, underwent some of the highest known peak temperatures of crustal metamorphism. Zircon and monazite U-Pb systems in granulites near Kandy, the highest grade region (similar to 1050 degrees C; 0.9 GPa), preserve both a record of the timing of prograde and retrograde phases of UHT metamorphism and evidence for the ages of older protolith components. Zircon grains from a quartz-saturated granulite containing relics of the peak UHT assemblage have remnant detrital cores with dates of ca. 2.5-0.83 Ga. Date clusters of ca. 1.7 and 1.04-0.83 Ga record episodes of zircon growth in the source region of the protolith sediment. Two generations of overgrowths with contrasting Th/U record metamorphic zircon growth at 569 +/- 5 and 551 +/- 7 Ma, probably in the absence and presence of monazite, respectively. The age of coexisting metamorphic monazite (547 +/- 7 Ma) is indistinguishable from that of the younger, low-Th/U zircon overgrowths. Zircon from a quartz-undersaturated monazite-absent UHT granulite with a mainly retrograde assemblage is mostly metamorphic (551 +/- 5 Ma). The ca. 570 Ma zircon overgrowths in the quartz-saturated granulite probably record partial melting just before or at the metamorphic peak. The ca. 550 Ma zircon in both rocks, and the ca. 550 Ma monazite in the quartz-saturated sample, record post-peak isothermal decompression. A possible model for this pressure-temperature-time evolution is ultrahot collisional orogeny during the assembly of Gondwana, locally superheated by basaltic underplating, followed by fast extensional exhumation.
Resumo:
The presence of allophane minerals imparts special engineering features to the volcanic ash soils. This study examines the reasons for the allophanic soils exhibiting unusual shear strength properties in comparison to sedimentary clays. The theories of residual shear strength developed for natural soils and artificial soil mixtures and the unusual surface charge properties of the allophane particle are invoked to explain the high shear strength values of these residual soils. The lack of any reasonable correlation between phi' (effective stress-strength parameter) and plasticity index values for allophanic soils is explained on the basis of the unusual structure of the allophane particle. The reasons as to why natural soil slopes in allophanic soil areas (example, Dominica, West Indies) are stable at much steeper angles than natural slopes in sedimentary clay deposits (London clay areas) are explained in light of the hypothesis developed in this study.
Resumo:
In this paper, we propose the first approximation for thickness of Quaternary sediment and late Quaternary early Tertiary topography for the part of lower reaches of Narmada valley in a systematic way using the shallow seismic method, that records both horizontal and vertical components of the microtremor (ambient noise) caused by natural processes. The measurements of microtremors were carried out at 31 sites spaced at a grid interval of 5 km s using Lennartz seismometer (5 s period) and City shark-II data acquisition system. The signals recorded were analysed for horizontal to the vertical (H/V) spectral ratio using GEOPSY software. For the present study, we concentrate on frequency range between 0.2 Hz and 10 Hz. The thickness of unconsolidated sediments at various sites is calculated based on non-linear regression equations proposed by Ibs-von Seht and Wohlenberg (1999) and Parolai et al. (2002). The estimated thickness is used to plot digital elevation model and cross profiles correlating with geomorphology and geology of the study area. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The nucleation morphologies of LPE grown GaSb, AlGaSb and AlGaAsSb layers on GaSb substrates are presented. The morphology of the GaSb layers grown from Sb-rich melts showed facets on highly terraced surface, whereas those grown from Ga-rich melts exhibited fine terraces without facets. An optimum temperature in the range of 500 – 550°C was found to be suitable for the growth of mirror smooth layers from Ga-melts. The surface morphology of the AlxGa1-xSb layers degrades drastically with increase in Al content beyond x = 0.5. The surface morphology of AlGaAsSb epilayers has been found to depend strongly on the pre-growth melt dissolution sequence.