54 resultados para Tensores de Maxwell
em Indian Institute of Science - Bangalore - Índia
Resumo:
In dealing with electromagnetic phenomena and in particular the phenomena of optics, despite the recognition of the quanta of light people tend to talk of the amplitudes and field strengths, as if the electromagnetic field were a classical field. For example we measure the wavelength of light by studying interference fringes. In this paper we study the inter-relationship of three ways of looking at the problem: in terms of classical wave fields, wave function of the photon; and the quantized wave field. The comparison and contrasts of these three modes of description are carefully analyzed in this paper. The ways in which these different modes complement our intuition and insight are also discussed.
Resumo:
Gaussian-beam-type solutions to the Maxwell equations are constructed by using results from relativistic front analysis, and the propagation characteristics of these beams are analyzed. The rays of geometrical optics are shown to be the trajectories of energy flow, as given by the Poynting vector. The longitudinal components of the field vectors in the direction of the beam axis, though small, are shown to be essential for a consistent description.
Resumo:
Extending the work of earlier papers on the relativistic-front description of paraxial optics and the formulation of Fourier optics for vector waves consistent with the Maxwell equations, we generalize the Jones calculus of axial plane waves to describe the action of the most general linear optical system on paraxial Maxwell fields. Several examples are worked out, and in each case it is shown that the formalism leads to physically correct results. The importance of retaining the small components of the field vectors along the axis of the system for a consistent description is emphasized.
Resumo:
The steady MHD mixed convection flow of a viscoelastic fluid in the vicinity of two-dimensional stagnation point with magnetic field has been investigated under the assumption that the fluid obeys the upper-convected Maxwell (UCM) model. Boundary layer theory is used to simplify the equations of motion. induced magnetic field and energy which results in three coupled non-linear ordinary differential equations which are well-posed. These equations have been solved by using finite difference method. The results indicate the reduction in the surface velocity gradient, surface heat transfer and displacement thickness with the increase in the elasticity number. These trends are opposite to those reported in the literature for a second-grade fluid. The surface velocity gradient and heat transfer are enhanced by the magnetic and buoyancy parameters. The surface heat transfer increases with the Prandtl number, but the surface velocity gradient decreases.
Resumo:
When a fluid with memory is injected into any flow region some assumptions regarding the initial state of stress have to be made in order to determine the state of stress at any subsequent instant. For a Maxwell fluid, it is assumed that the fluid near the surface of injection is suddenly stressed and responds by starting flow in accordance with the mechanical model chosen. The flow of a Maxwell fluid with a single relaxation time has been determined under the above assumption in the following two cases: (i) annulus between two porous concentric circular cylinders, and (ii) space between two porous and infinitely extending parallel plates. The nature of flow in the present case is similar to that of the Reiner-Rivlin fluids obtained by Narasimhan2).
Resumo:
We consider the secondary flows arising in the motion of a Maxwell fluid between two rotating coaxial cones having the same vertex. We find that in any meridian plane passing through the common axis of the cones, the flow field is divided into two regions. Such a division of flow field was first reported by Bhatnagar and Rathna.
Resumo:
Moore's Law has driven the semiconductor revolution enabling over four decades of scaling in frequency, size, complexity, and power. However, the limits of physics are preventing further scaling of speed, forcing a paradigm shift towards multicore computing and parallelization. In effect, the system is taking over the role that the single CPU was playing: high-speed signals running through chips but also packages and boards connect ever more complex systems. High-speed signals making their way through the entire system cause new challenges in the design of computing hardware. Inductance, phase shifts and velocity of light effects, material resonances, and wave behavior become not only prevalent but need to be calculated accurately and rapidly to enable short design cycle times. In essence, to continue scaling with Moore's Law requires the incorporation of Maxwell's equations in the design process. Incorporating Maxwell's equations into the design flow is only possible through the combined power that new algorithms, parallelization and high-speed computing provide. At the same time, incorporation of Maxwell-based models into circuit and system-level simulation presents a massive accuracy, passivity, and scalability challenge. In this tutorial, we navigate through the often confusing terminology and concepts behind field solvers, show how advances in field solvers enable integration into EDA flows, present novel methods for model generation and passivity assurance in large systems, and demonstrate the power of cloud computing in enabling the next generation of scalable Maxwell solvers and the next generation of Moore's Law scaling of systems. We intend to show the truly symbiotic growing relationship between Maxwell and Moore!
Resumo:
The steady mixed convection flow and heat transfer from an exponentially stretching vertical surface in a quiescent Maxwell fluid in the presence of magnetic field, viscous dissipation and Joule heating have been studied. The stretching velocity, surface temperature and magnetic field are assumed to have specific exponential function forms for the existence of the local similarity solution. The coupled nonlinear ordinary differential equations governing the local similarity flow and heat transfer have been solved numerically by Chebyshev finite difference method. The influence of the buoyancy parameter, viscous dissipation, relaxation parameter of Maxwell fluid, magnetic field and Prandtl number on the flow and heat transfer has been considered in detail. The Nusselt number increases significantly with the Prandtl number, but the skin friction coefficient decreases. The Nusselt number slightly decreases with increasing viscous dissipation parameter, but the skin friction coefficient slightly increases. Maxwell fluid reduces both skin friction coefficient and Nusselt number, whereas buoyancy force enhances them.
Resumo:
Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as similar to 10(5) in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.
Resumo:
Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as similar to 10(5) in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.
Resumo:
With the extension of the work of the preceding paper, the relativistic front form for Maxwell's equations for electromagnetism is developed and shown to be particularly suited to the description of paraxial waves. The generators of the Poincaré group in a form applicable directly to the electric and magnetic field vectors are derived. It is shown that the effect of a thin lens on a paraxial electromagnetic wave is given by a six-dimensional transformation matrix, constructed out of certain special generators of the Poincaré group. The method of construction guarantees that the free propagation of such waves as well as their transmission through ideal optical systems can be described in terms of the metaplectic group, exactly as found for scalar waves by Bacry and Cadilhac. An alternative formulation in terms of a vector potential is also constructed. It is chosen in a gauge suggested by the front form and by the requirement that the lens transformation matrix act locally in space. Pencils of light with accompanying polarization are defined for statistical states in terms of the two-point correlation function of the vector potential. Their propagation and transmission through lenses are briefly considered in the paraxial limit. This paper extends Fourier optics and completes it by formulating it for the Maxwell field. We stress that the derivations depend explicitly on the "henochromatic" idealization as well as the identification of the ideal lens with a quadratic phase shift and are heuristic to this extent.
Resumo:
A global climate model experiment is performed to evaluate the effect of irrigation on temperatures in several major irrigated regions of the world. The Community Atmosphere Model, version 3.3, was modified to represent irrigation for the fraction of each grid cell equipped for irrigation according to datasets from the Food and Agriculture Organization. Results indicate substantial regional differences in the magnitude of irrigation-induced cooling, which are attributed to three primary factors: differences in extent of the irrigated area, differences in the simulated soil moisture for the control simulation (without irrigation), and the nature of cloud response to irrigation. The last factor appeared especially important for the dry season in India, although further analysis with other models and observations are needed to verify this feedback. Comparison with observed temperatures revealed substantially lower biases in several regions for the simulation with irrigation than for the control, suggesting that the lack of irrigation may be an important component of temperature bias in this model or that irrigation compensates for other biases. The results of this study should help to translate the results from past regional efforts, which have largely focused on the United States, to regions in the developing world that in many cases continue to experience significant expansion of irrigated land.
Resumo:
The temperature dependence of the dielectric constant of diamond has been measured over the temperature range 50-2OO"c. The value of E-ldc dT over this range is + 1 x 10-j. Details of the method of measuring the temperature coefficient of dielectric constant are also given. The magnitude and sign of c-ldc, dT for diamond has been theoretically calculated using Maxwell's relationship and Kramers-Heisenberg theory. The agreement between theoretical and experimental values is extremely good.
Resumo:
Polarization properties of Gaussian laser beams are analyzed in a manner consistent with the Maxwell equations, and expressions are developed for all components of the electric and magnetic field vectors in the beam. It is shown that the transverse nature of the free electromagnetic field demands a nonzero transverse cross-polarization component in addition to the well-known component of the field vectors along the beam axis. The strength of these components in relation to the strength of the principal polarization component is established. It is further shown that the integrated strengths of these components over a transverse plane are invariants of the propagation process. It is suggested that cross- polarization measurement using a null detector can serve as a new method for accurate determination of the center of Gaussian laser beams.
Resumo:
The effective medium theory for a system with randomly distributed point conductivity and polarisability is reformulated, with attention to cross-terms involving the two disorder parameters. The treatment reveals a certain inconsistency of the conventional theory owing to the neglect of the Maxwell-Wagner effect. The results are significant for the critical resistivity and dielectric anomalies of a binary liquid mixture at the phase separation point.