8 resultados para Teflon

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An innovative technique to obtain high-surface-area mesostructured carbon (2545m(2)g(-1)) with significant microporosity uses Teflon as the silica template removal agent. This method not only shortens synthesis time by combining silica removal and carbonization in a single step, but also assists in ultrafast removal of the template (in 10min) with complete elimination of toxic HF usage. The obtained carbon material (JNC-1) displays excellent CO2 capture ability (ca. 26.2wt% at 0 degrees C under 0.88bar CO2 pressure), which is twice that of CMK-3 obtained by the HF etching method (13.0wt%). JNC-1 demonstrated higher H-2 adsorption capacity (2.8wt%) compared to CMK-3 (1.2wt%) at -196 degrees C under 1.0bar H-2 pressure. The bimodal pore architecture of JNC-1 led to superior supercapacitor performance, with a specific capacitance of 292Fg(-1) and 182Fg(-1) at a drain rate of 1Ag(-1) and 50Ag(-1), respectively, in 1m H2SO4 compared to CMK-3 and activated carbon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An innovative technique to obtain high-surface-area mesostructured carbon (2545m(2)g(-1)) with significant microporosity uses Teflon as the silica template removal agent. This method not only shortens synthesis time by combining silica removal and carbonization in a single step, but also assists in ultrafast removal of the template (in 10min) with complete elimination of toxic HF usage. The obtained carbon material (JNC-1) displays excellent CO2 capture ability (ca. 26.2wt% at 0 degrees C under 0.88bar CO2 pressure), which is twice that of CMK-3 obtained by the HF etching method (13.0wt%). JNC-1 demonstrated higher H-2 adsorption capacity (2.8wt%) compared to CMK-3 (1.2wt%) at -196 degrees C under 1.0bar H-2 pressure. The bimodal pore architecture of JNC-1 led to superior supercapacitor performance, with a specific capacitance of 292Fg(-1) and 182Fg(-1) at a drain rate of 1Ag(-1) and 50Ag(-1), respectively, in 1m H2SO4 compared to CMK-3 and activated carbon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Describes a simple triggered vacuum gap developed for initiating electric arcs in vacuum which uses the property that the voltage required to breakdown a gap in vacuum in the presence of a solid insulating material is considerably less than the voltage required in the absence of such material. In this triggered vacuum gap a solid insulating material is used in the angular space between the main cathode and the concentric trigger electrode forming the auxiliary gap. Different materials like epoxy resin, Teflon (PTFE) and mica have been used. The trigger voltage was found to vary in the range 560-1840 V. The results with epoxy and Teflon were unsatisfactory because the trigger voltages showed wide scatter and the auxiliary gap was soon bridged by metal particles eroded from the electrodes. Though the trigger voltages required with mica were relatively high, consistent triggering could be obtained for a large number of trials before the auxiliary gap was bridged. This was probably due to better thermal stability of mica as compared with either epoxy or Teflon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using ab initio methods we have investigated the fluorination of graphene and find that different stoichiometric phases can be formed without a nucleation barrier, with the complete “2D-Teflon” CF phase being thermodynamically most stable. The fluorinated graphene is an insulator and turns out to be a perfect matrix-host for patterning nanoroads and quantum dots of pristine graphene. The electronic and magnetic properties of the nanoroads can be tuned by varying the edge orientation and width. The energy gaps between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO) of quantum dots are size-dependent and show a confinement typical of Dirac fermions. Furthermore, we study the effect of different basic coverage of F on graphene (with stoichiometries CF and C4F) on the band gaps, and show the suitability of these materials to host quantum dots of graphene with unique electronic properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tn the current set of investigations foam sandwich panels and some components of an aircraft comprising of two layer Glass Fiber Reinforced Plastic(GFRP) face sheets of thickness 1mm each with polyurethene foam as filler of thickness 8mm were examined for detection of debonds and defects. Known defects were introduced in the panels in the form of teflon insert, full foam removal,half foam removal and edge delamination by inserting a teflon and removing it after curing. Two such panels were subjected to acoustic impact and analysis was carried out in both time and frequency domains. These panels were ultrasonically scanned to obtain C-SCAN images as reference to evaluate Acoustic Impact Test (AIT) results. In addition both Fokker bond testing and AIT(woodpecker) were carried out on the same panels and also some critical joints on the actual component. The results obtained from these tests are presented and discussed in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A layered double hydroxide (LDH) with chemical composition LiAl2(OH)(7) . 2H(2)O was prepared via a wet chemical route of gel to crystallite (G-C) conversion at 80 degrees C involving the reaction of hydrated alumina gel, Al2O3.yH(2)O (80 < y < 120) with LiOH (Li2O/Al2O3 greater than or equal to 0.5) in presence of hydrophilic solvents such as ethanol under refluxing conditions. The hydrothermal synthesis was carried out using the same reactants by heating to less than or equal to 140 degrees C in a Teflon-lined autoclave under autogenerated pressure (less than or equal to 20 MPa). Transmission electron microscopy showed needle-shaped aggregates of size 0.04-0.1 mu m for the gel to crystallite conversion product, whereas the hydrothermal products consisted of individual lamellar crystallites of size 0.2-0.5 mu m with hexagonal morphology. The LDH prepared through the gel to crystallite conversion could be converted into LiAl(OH)(4) . H2O or LiAl(OH)(3)NO3 . H2O by imbibition of LiOH or LiNO3, respectively, under hydrothermal conditions. Thermal decomposition of LDH above 1400 degrees C gave rise to LiAl5O8 accompanied by the evaporation of Li2O. LiAl(OH)(4) . H2O and LiAl(OH)(3)NO3 . H2O decomposed in the temperature range 400-1000 degrees C to alpha- or beta-LiAlO2. The compositional dependence of the product, the intermediate phases formed during the heat treatment and the possible reactions involved are described in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Charts relating the capacitance to the width, spacing, thickness and height above the ground plane of coupled microstrips have been obtained. These are used to design hairpin line and hybrid hairpin line filters as well as multiplexers using microstrip comb line filters. The experimental results agree reasonably well with the design specifications. Getsinger's original charts for parallel coupled bars between parallel plates have been formulated for the microstrip case. Corresponding charts relating the capacitances to the width, spacing, thickness and height above the ground plane of coupled microstrips have been obtained. Examples of the use of these charts are shown in the design of hairpin lines and hybrid hairpin line filters as well as multiplexers using comb line filters. The hairpin line/hybrid hairpin line filters were designed to operate at a central frequency of 9÷5 GHz with 11 per cent bandwidth and 0÷5 dB ripple. The three filters constituting the comb line filters have center frequencies of 2÷4, 3÷0 and 3÷6 GHz. The components so designed were fabricated and tested. The dielectric used for the microstrip was teflon. Experimental curves for the attenuation (insertion loss) and VSWR are given. The design specifications arc satisfied quite well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Co3O4 and Co3O4/MWCNTs were prepared by hydrothermal process under autogenous pressure in Teflon lined autoclave and calcined at 250 degrees C. Both samples were characterized by PXRD, FT-IR, SEM-EDS, TEM & FT-Raman to evaluate their surface and bulk properties. The PXRD pattern of the materials indicated the formation of cubic phase of Co3O4. FT-IR results showed the presence of metal oxygen bond in the samples. The SEM and TEM images of the Co3O4 / MWCNTs indicated spherical and cubic aggregates of metal oxide particles (10-30 nm) decorated both on the surface and inside the tubes of carbon nanotubes. The characteristic Ig and Id (graphitic and defects) Raman bands indicated the retention of tubular structure of MWCNTs even after the deposition of Co3O4. The calcined Co3O4-MWCNTs composites and Co3O4 exhibited specific capacitance of 284 & 205 F/g at a sweep rate of 2mVs(-1) in 6M KOH by cyclic voltammetry. The psuedocapacitance performances of calcined Co3O4-MWCNTs were found to be better than Co3O4. Chronopotentiometric studies made for the materials at a current density of 500mA/g indicated 100% columbic efficiency at 2000th cycle for Co3O4/ MWCNTs which is a better electrode material than Co3O4.