24 resultados para Technology Transfer

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Empirical research available on technology transfer initiatives is either North American or European. Literature over the last two decades shows various research objectives such as identifying the variables to be measured and statistical methods to be used in the context of studying university based technology transfer initiatives. AUTM survey data from years 1996 to 2008 provides insightful patterns about the North American technology transfer initiatives, we use this data in our paper. This paper has three sections namely, a comparison of North American Universities with (n=1129) and without Medical Schools (n=786), an analysis of the top 75th percentile of these samples and a DEA analysis of these samples. We use 20 variables. Researchers have attempted to classify university based technology transfer initiative variables into multi-stages, namely, disclosures, patents and license agreements. Using the same approach, however with minor variations, three stages are defined in this paper. The first stage is to do with inputs from R&D expenditure and outputs namely, invention disclosures. The second stage is to do with invention disclosures being the input and patents issued being the output. The third stage is to do with patents issued as an input and technology transfers as outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are multiple goals of a technology transfer office (TTO) based in a university system. Whilst commercialization is a critical goal, maintenance and cleaning of the TTO's database needs detailing. Literature in the area is scarce and only some researchers make reference to TTO data cleaning. During an attempt to understand the commercial strategy of a university TTO in Bangalore the challenge of data cleaning was encountered. This paper describes a case study of data cleaning at an Indian university based TTO. 382 patent records were analyzed in the study. The case study first describes the back ground of the university system. Second, the method to clean the data and the experiences encountered are highlighted. Insights drawn indicate that patent data cleaning in a TTO is a specialized area which needs attention. Overlooking this activity can have legal implications and may result in an inability to commercialize the patent. Two levels of patent data cleaning are discussed in this case study. Best practices of data cleaning in academic TTOs are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

India's energy challenges are multi-pronged. They are manifested through growing demand for modern energy carriers, a fossil fuel dominated energy system facing a severe resource crunch, the need for creating access to quality energy for the large section of deprived population, vulnerable energy security, local and global pollution regimes and the need for sustaining economic development. Renewable energy is considered as one of the most promising alternatives. Recognizing this potential, India has been implementing one of the largest renewable energy programmes in the world. Among the renewable energy technologies. bioenergy has a large diverse portfolio including efficient biomass stoves, biogas, biomass combustion and gasification and process heat and liquid fuels. India has also formulated and implemented a number of innovative policies and programmes to promote bioenergy technologies. However, according to some preliminary studies, the success rate is marginal compared to the potential available. This limited success is a clear indicator of the need for a serious reassessment of the bioenergy programme. Further, a realization of the need for adopting a sustainable energy path to address the above challenges will be the guiding force in this reassessment. In this paper an attempt is made to consider the potential of bioenergy to meet the rural energy needs: (I) biomass combustion and gasification for electricity; (2) biomethanation for cooking energy (gas) and electricity; and (3) efficient wood-burning devices for cooking. The paper focuses on analysing the effectiveness of bioenergy in creating this rural energy access and its sustainability in the long run through assessing: the demand for bioenergy and potential that could be created; technologies, status of commercialization and technology transfer and dissemination in India; economic and environmental performance and impacts: bioenergy policies, regulatory measures and barrier analysis. The whole assessment aims at presenting bioenergy as an integral part of a sustainable energy strategy for India. The results show that bioenergy technology (BET) alternatives compare favourably with the conventional ones. The cost comparisons show that the unit costs of BET alternatives are in the range of 15-187% of the conventional alternatives. The climate change benefits in terms of carbon emission reductions are to the tune of 110 T C per year provided the available potential of BETs are utilized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dissipation rate of turbulent kinetic energy (epsilon) is a key parameter for mixing in surface aerators. In particular, determination epsilon across the impeller stream, where the most intensive mixing takes place, is essential to ascertain that an appropriate degree of mixing is achieved. Present work by using commercial software VisiMix (R) calculates the energy dissipation rate in geometrically similar unbaffled surface aeration systems in order to scale-up the oxygen transfer process. It is found that in geometrically similar system, oxygen transfer rate is uniquely correlated with dissipation rate of energy. Simulation or scale-up equation governing oxygen transfer rate and dissipation rate of energy has been developed in the present work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dissipation rate of turbulent kinetic energy(e)is a key parameter for mixing in surface aerators. In particular, determination e across the impeller stream, where the most intensive mixing takes place, is essential to ascertain that an appropriate degree of mixing is achieved. Present work by using commercial software VisiMix calculates the energy dissipation rate in geometrically similar unbaffled surface aeration systems in order to scale-up the oxygen transfer process. It is found that in geometrically similar system,oxygen transfer rate is uniquely correlated with dissipation rate of energy. Simulation or scale-up equation governing oxygen transfer rate and dissipation rate of energy has been developed in the present work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

THE rapid development of recombinant DNA technology has brought forth a revolution in biology'>", it aids us to have a closer look at the 'way genes are organized, eS11 ecially in the complex eucaryotic genornes'<", Although many animal and yeast genes have been studied in detail using recombinant DNA technology, plant genes have seldom been targets for such studie., Germination is an ideal process to study gene expression .because it effects a . shift in the metabolic status of seeds from a state of 'dormancy to an active one. AJ;l understanding of gene organization and regulation darin.g germination can be accomplblted by molecular cloning of DNA from seeds lik.e rice. To study the status of histone, rRNA tRNA and other genes in the rice genome, a general method was developed to clone eucarvotic DNA in a' plasmid vector pBR 322. This essentially ~ involves the following steps. The rice embryo and plasmid pBR 322 DNAs were cut witll restriction endonuclease Bam Hi to generate stick.Y ends, The plasmid DNA was puosphatased, the DNA~ ware a~·tnealed and joined 'by T4 phage DNA ligase. The recombinant DNA molecules thus produced were transjerred into E. coli and colonies containing them Were selected by their sensitivity to tetracycline and resistance to ampicillin, Two clones were identified . 2S haVing tRNA genes by hybridization of the DNA in the clones \vitl1 32P-la.belled rice tRNAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface aeration systems employed in activated sludge plants are the most energy-intensive units of the plants and typically account for a higher percentage of the treatment facility's total energy use. The geometry of the aeration tank imparts a major effect on the system efficiency. It is said that at optimal geometric onditions, systems exhibits the maximum efficiency. Thus the quantification of the optimal geometric conditions in surface aeration tanks is needed. Optimal geometric conditions are also needed to scale up the laboratory result to the field installation. In the present work, experimental studies have been carried out on baffled and unbaffled circular surface aeration tanks to ascertain the optimal geometric conditions. It is found that no optimal geometric conditions exist for the liquid/water depth in circular surface aeration tanks; however, for design purposes, a standard value has been assumed. Based on the optimal geometric conditions, a scale-up equation has been developed for the baffled circular surface aeration tanks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The implementation of three-phase sinusoidal pulse-width-modulated inverter control strategy using microprocessor is discussed in this paper. To save CPU time, the DMA technique is used for transferring the switching pattern from memory to the pulse amplifier and isolation circuits of individual thyristors in the inverter bridge. The method of controlling both voltage and frequency is discussed here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A thermal model for a conventional biogas plant has been developed in order to understand the heat transfer from the slurry and the gas holder to the surrounding earth and air respectively. The computations have been performed for two conditions : (i) when the slurry is at an ambient temperature of 20°C, and (ii) when it is at 35°C, the optimum temperature for anaerobic fermentation. Under both these conditions, the gas holder is the major “culprit” with regard to heat losses from the biogas plant. The calculations provide an estimate for the heat which has to be supplied by external means to compensate for the net heat losses which occur if the slurry is to be maintained at 35°C. Even if this external supply of heat is realised through (the calorific value of) biogas, there is a net increase in the biogas output, and therefore a net benefit, by operating the plant at 35°C. At this elevated temperature, the cooling effect of adding the influent at ambient temperature is not insignificant. In conclusion, the results of the thermal analysis are used to define a strategy for operating biogas plants at optimum temperatures, or at higher temperatures than the ambient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report Raman studies on powder samples of the charge transfer complex (TTF)(x)C60Br8 at room temperature. The phonons show considerable softening with respect to the frequencies observed in the Raman spectrum of solid C60Br8. The strongest mode at 1464 cm(-1) in C60Br8 is red shifted to a doublet with peaks at 1414 and 1421 cm(-1), implying an average phonon softening Delta omega of -47 cm(-1). A comparison with the phonon softening of the corresponding A(g)(2) mode in alkali-doped C-60 (Delta omega similar to -36 cm(-1) for A(6)C(60), A = K, Rb or Cs) suggests that 8 electrons are transferred per C60Br8 molecule in the charge transfer complex. The mode at 503 cm(-1) in C60Br8 is shifted upwards, similar to that in A(6)C(60) compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systematic approach is developed for scaling analysis of momentum, heat and species conservation equations pertaining to the case of solidification of a binary mixture. The problem formulation and description of boundary conditions are kept fairly general, so that a large class of problems can be addressed. Analysis of the momentum equations coupled with phase change considerations leads to the establishment of an advection velocity scale. Analysis of the energy equation leads to an estimation of the solid layer thickness. Different regimes corresponding to different dominant modes of transport are simultaneously identified. A comparative study involving several cases of possible thermal boundary conditions is also performed. Finally, a scaling analysis of the species conservation equation is carried out, revealing the effect of a non-equilibrium solidification model on solute segregation and species distribution. It is shown that non-equilibrium effects result in an enhanced macrosegregation compared with the case of an equilibrium model. For the sake of assessment of the scaling analysis, the predictions are validated against corresponding computational results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work reported in this thesis is an attempt to enhance heat transfer in electronic devices with the use of impinging air jets on pin-finned heat sinks. The cooling per-formance of electronic devices has attracted increased attention owing to the demand of compact size, higher power densities and demands on system performance and re-liability. Although the technology of cooling has greatly advanced, the main cause of malfunction of the electronic devices remains overheating. The problem arises due to restriction of space and also due to high heat dissipation rates, which have increased from a fraction of a W/cm2to 100s of W /cm2. Although several researchers have at-tempted to address this at the design stage, unfortunately the speed of invention of cooling mechanism has not kept pace with the ever-increasing requirement of heat re- moval from electronic chips. As a result, efficient cooling of electronic chip remains a challenge in thermal engineering. Heat transfer can be enhanced by several ways like air cooling, liquid cooling, phase change cooling etc. However, in certain applications due to limitations on cost and weight, eg. air borne application, air cooling is imperative. The heat transfer can be increased by two ways. First, increasing the heat transfer coefficient (forced convec- tion), and second, increasing the surface area of heat transfer (finned heat sinks). From previous literature it was established that for a given volumetric air flow rate, jet im-pingement is the best option for enhancing heat transfer coefficient and for a given volume of heat sink material pin-finned heat sinks are the best option because of their high surface area to volume ratio. There are certain applications where very high jet velocities cannot be used because of limitations of noise and presence of delicate components. This process can further be improved by pulsating the jet. A steady jet often stabilizes the boundary layer on the surface to be cooled. Enhancement in the convective heat transfer can be achieved if the boundary layer is broken. Disruptions in the boundary layer can be caused by pulsating the impinging jet, i.e., making the jet unsteady. Besides, the pulsations lead to chaotic mixing, i.e., the fluid particles no more follow well defined streamlines but move unpredictably through the stagnation region. Thus the flow mimics turbulence at low Reynolds number. The pulsation should be done in such a way that the boundary layer can be disturbed periodically and yet adequate coolant is made available. So, that there is not much variation in temperature during one pulse cycle. From previous literature it was found that square waveform is most effective in enhancing heat transfer. In the present study the combined effect of pin-finned heat sink and impinging slot jet, both steady and unsteady, has been investigated for both laminar and turbulent flows. The effect of fin height and height of impingement has been studied. The jets have been pulsated in square waveform to study the effect of frequency and duty cycle. This thesis attempts to increase our understanding of the slot jet impingement on pin-finned heat sinks through numerical investigations. A systematic study is carried out using the finite-volume code FLUENT (Version 6.2) to solve the thermal and flow fields. The standard k-ε model for turbulence equations and two layer zonal model in wall function are used in the problem Pressure-velocity coupling is handled using the SIMPLE algorithm with a staggered grid. The parameters that affect the heat transfer coefficient are: height of the fins, total height of impingement, jet exit Reynolds number, frequency of the jet and duty cycle (percentage time the jet is flowing during one complete cycle of the pulse). From the studies carried out it was found that: a) beyond a certain height of the fin the rate of enhancement of heat transfer becomes very low with further increase in height, b) the heat transfer enhancement is much more sensitive to any changes at low Reynolds number than compared to high Reynolds number, c) for a given total height of impingement the use of fins and pulsated jet, increases the effective heat transfer coefficient by almost 200% for the same average Reynolds number, d) for all the cases it was observed that the optimum frequency of impingement is around 50 − 100 Hz and optimum duty cycle around 25-33.33%, e) in the case of turbulent jets the enhancement in heat transfer due to pulsations is very less compared to the enhancement in case of laminar jets.