15 resultados para Technical reports
em Indian Institute of Science - Bangalore - Índia
Resumo:
A geometrical structure called the implied minterm structure (IMS) has been developed from the properties of minterms of a threshold function. The IMS is useful for the manual testing of linear separability of switching functions of up to six variables. This testing is done just by inspection of the plot of the function on the IMS.
Resumo:
A technique for obtaining a uniformly valid solution to the problem of nonlinear propagation of surface acoustic waves excited by a monochromatic line source is presented. The method of solution is an extension of the method of strained coordinates wherein both the dependent and independent variables are expanded in perturbation series. A special transformation is proposed for the independent variables so as to make the expansions uniformly valid and also to satisfy all the boundary conditions. This perturbation procedure, carried out to the second order, yields a solution containing a second harmonic surface wave whose amplitude and phase exhibit an oscillatory variation along the direction of propagation. In addition, the solution also contains a second harmonic bulk wave of constant amplitude but varying phase propagating into the medium.
Resumo:
The mean duration of a lightning flash is observed to exhibit systematic variation with the growth and decay of the activity of a thundercloud and reaches a minimum value when the radio noise level and rate of flashing are at their maximum values.
Resumo:
We study the coverage in sensor networks having two types of nodes, sensor and backbone nodes. Each sensor is capable of transmitting information over relatively small distances. The backbone nodes collect information from the sensors. This information is processed and communicated over an ad-hoc network formed by the backbone nodes,which are capable of transmitting over much larger distances. We consider two modes of deployment of sensors, one a Poisson-Poisson cluster model and the other a dependently-thinned Poisson point process. We deduce limit laws for functionals of vacancy in both models using properties of association for random measures.
Resumo:
Given two independent Poisson point processes ©(1);©(2) in Rd, the AB Poisson Boolean model is the graph with points of ©(1) as vertices and with edges between any pair of points for which the intersection of balls of radius 2r centred at these points contains at least one point of ©(2). This is a generalization of the AB percolation model on discrete lattices. We show the existence of percolation for all d ¸ 2 and derive bounds for a critical intensity. We also provide a characterization for this critical intensity when d = 2. To study the connectivity problem, we consider independent Poisson point processes of intensities n and cn in the unit cube. The AB random geometric graph is de¯ned as above but with balls of radius r. We derive a weak law result for the largest nearest neighbour distance and almost sure asymptotic bounds for the connectivity threshold.
Resumo:
The report talks about the implementation of Vehicle Detection tool using opensource software - WxPython. The main functionality of this tool includes collection of data, plotting of magnetometer data and the count of the vehicles detected. The report list about how installation process and various functionality of the tool.
Resumo:
Study of hypersynchronous activity is of prime importance for combating epilepsy. Studies on network structure typically reconstruct the network by measuring various aspects of the interaction between neurons and subsequently measure the properties of the reconstructed network. In sub-sampled networks such methods lead to significant errors in reconstruction. Using rat hippocampal neurons cultured on a multi-electrode array dish and a glutamate injury model of epilepsy in vitro, we studied synchronous activity in neuronal networks. Using the first spike latencies in various neurons during a network burst, we extract various recurring spatio-temporal onset patterns in the networks. Comparing the patterns seen in control and injured networks, we observe that injured networks express a wide diversity in their foci (origin) and activation pattern, while control networks show limited diversity. Furthermore, we note that onset patterns in glutamate injured networks show a positive correlation between synchronization delay and physical distance between neurons, while control networks do not.
Resumo:
We present a method for differential ratiometric measurement of reflectance change due to molecular adsorption using a diffractive microstructure fabricated on a reflectance contrast enhancing substrate for bulk refractometry and surface molecular binding detection applications. The differential method suppresses signal fluctuations due to thermal or concentration gradients in the sample flow cell by more than 40x and enables the real-time measurement of molecular interactions on the surface with a noise floor of about 70 pm. (V)C 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4766190]
Resumo:
In a communication system in which K nodes communicate with a central sink node, the following problem of selection often occurs. Each node maintains a preference number called a metric, which is not known to other nodes. The sink node must find the `best' node with the largest metric. The local nature of the metrics requires the selection process to be distributed. Further, the selection needs to be fast in order to increase the fraction of time available for data transmission using the selected node and to handle time-varying environments. While several selection schemes have been proposed in the literature, each has its own shortcomings. We propose a novel, distributed selection scheme that generalizes the best features of the timer scheme, which requires minimal feedback but does not guarantee successful selection, and the splitting scheme, which requires more feedback but guarantees successful selection. The proposed scheme introduces several new ideas into the design of the timer and splitting schemes. It explicitly accounts for feedback overheads and guarantees selection of the best node. We analyze and optimize the performance of the scheme and show that it is scalable, reliable, and fast. We also present new insights about the optimal timer scheme.
Resumo:
Motivated by applications to distributed storage, Gopalan et al recently introduced the interesting notion of information-symbol locality in a linear code. By this it is meant that each message symbol appears in a parity-check equation associated with small Hamming weight, thereby enabling recovery of the message symbol by examining a small number of other code symbols. This notion is expanded to the case when all code symbols, not just the message symbols, are covered by such ``local'' parity. In this paper, we extend the results of Gopalan et. al. so as to permit recovery of an erased code symbol even in the presence of errors in local parity symbols. We present tight bounds on the minimum distance of such codes and exhibit codes that are optimal with respect to the local error-correction property. As a corollary, we obtain an upper bound on the minimum distance of a concatenated code.
Resumo:
For an n(t) transmit, nr receive antenna (n(t) x n(r)) MIMO system with quasi- static Rayleigh fading, it was shown by Elia et al. that space-time block code-schemes (STBC-schemes) which have the non-vanishing determinant (NVD) property and are based on minimal-delay STBCs (STBC block length equals n(t)) with a symbol rate of n(t) complex symbols per channel use (rate-n(t) STBC) are diversity-multiplexing gain tradeoff (DMT)-optimal for arbitrary values of n(r). Further, explicit linear STBC-schemes (LSTBC-schemes) with the NVD property were also constructed. However, for asymmetric MIMO systems (where n(r) < n(t)), with the exception of the Alamouti code-scheme for the 2 x 1 system and rate-1, diagonal STBC-schemes with NVD for an nt x 1 system, no known minimal-delay, rate-n(r) LSTBC-scheme has been shown to be DMT-optimal. In this paper, we first obtain an enhanced sufficient criterion for an STBC-scheme to be DMT optimal and using this result, we show that for certain asymmetric MIMO systems, many well-known LSTBC-schemes which have low ML-decoding complexity are DMT-optimal, a fact that was unknown hitherto.
Resumo:
We consider a visual search problem studied by Sripati and Olson where the objective is to identify an oddball image embedded among multiple distractor images as quickly as possible. We model this visual search task as an active sequential hypothesis testing problem (ASHT problem). Chernoff in 1959 proposed a policy in which the expected delay to decision is asymptotically optimal. The asymptotics is under vanishing error probabilities. We first prove a stronger property on the moments of the delay until a decision, under the same asymptotics. Applying the result to the visual search problem, we then propose a ``neuronal metric'' on the measured neuronal responses that captures the discriminability between images. From empirical study we obtain a remarkable correlation (r = 0.90) between the proposed neuronal metric and speed of discrimination between the images. Although this correlation is lower than with the L-1 metric used by Sripati and Olson, this metric has the advantage of being firmly grounded in formal decision theory.
Resumo:
Numerous algorithms have been proposed recently for sparse signal recovery in Compressed Sensing (CS). In practice, the number of measurements can be very limited due to the nature of the problem and/or the underlying statistical distribution of the non-zero elements of the sparse signal may not be known a priori. It has been observed that the performance of any sparse signal recovery algorithm depends on these factors, which makes the selection of a suitable sparse recovery algorithm difficult. To take advantage in such situations, we propose to use a fusion framework using which we employ multiple sparse signal recovery algorithms and fuse their estimates to get a better estimate. Theoretical results justifying the performance improvement are shown. The efficacy of the proposed scheme is demonstrated by Monte Carlo simulations using synthetic sparse signals and ECG signals selected from MIT-BIH database.