2 resultados para Teaching-learning research
em Indian Institute of Science - Bangalore - Índia
Resumo:
Design research informs and supports practice by developing knowledge to improve the chances of producing successful products.Training in design research has been poorly supported. Design research uses human and natural/technical sciences, embracing all facets of design; its methods and tools are adapted from both these traditions. However, design researchers are rarely trained in methods from both the traditions. Research in traditional sciences focuses primarily on understanding phenomena related to human, natural, or technical systems. Design research focuses on supporting improvement of such systems, using understanding as a necessary but not sufficient step, and it must embrace methods for both understanding reality and developing support for its improvement. A one-semester, postgraduate-level, credited course that has been offered since 2002, entitled Methodology for Design Research, is described that teaches a methodology for carrying out research into design. Its steps are to clarify research success; to understand relevant phenomena of design and how these influence success; to use this to envision design improvement and develop proposals for supporting improvement; to evaluate support for its influence on success; and, if unacceptable, to modify, support, or improve the understanding of success and its links to the phenomena of design. This paper highlights some major issues about the status of design research and describes how design research methodology addresses these. The teaching material, model of delivery, and evaluation of the course on methodology for design research are discussed.
Resumo:
This paper(1) presents novel algorithms and applications for a particular class of mixed-norm regularization based Multiple Kernel Learning (MKL) formulations. The formulations assume that the given kernels are grouped and employ l(1) norm regularization for promoting sparsity within RKHS norms of each group and l(s), s >= 2 norm regularization for promoting non-sparse combinations across groups. Various sparsity levels in combining the kernels can be achieved by varying the grouping of kernels-hence we name the formulations as Variable Sparsity Kernel Learning (VSKL) formulations. While previous attempts have a non-convex formulation, here we present a convex formulation which admits efficient Mirror-Descent (MD) based solving techniques. The proposed MD based algorithm optimizes over product of simplices and has a computational complexity of O (m(2)n(tot) log n(max)/epsilon(2)) where m is no. training data points, n(max), n(tot) are the maximum no. kernels in any group, total no. kernels respectively and epsilon is the error in approximating the objective. A detailed proof of convergence of the algorithm is also presented. Experimental results show that the VSKL formulations are well-suited for multi-modal learning tasks like object categorization. Results also show that the MD based algorithm outperforms state-of-the-art MKL solvers in terms of computational efficiency.