7 resultados para Teaching of Geometry
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper describes a predictive model for breakout noise from an elliptical duct or shell of finite length. The transmission mechanism is essentially that of ``mode coupling'', whereby higher structural modes in the duct walls get excited because of non-circularity of the wall. Effect of geometry has been taken care of by evaluating Fourier coefficients of the radius of curvature. The noise radiated from the duct walls is represented by that from a finite vibrating length of a semi infinite cylinder in a free field. Emphasis is on understanding the physics of the problem as well as analytical modeling. The analytical model is validated with 3-D FEM. Effects of the ovality, curvature, and axial terminations of the duct have been demonstrated. (C) 2010 Institute of Noise Control Engineering.
Resumo:
In this paper, a physically based analytical quantum linear threshold voltage model for short channel quad gate MOSFETs is developed. The proposed model, which is suitable for circuit simulation, is based on the analytical solution of 3-D Poisson and 2-D Schrodinger equation. Proposed model is fully validated against the professional numerical device simulator for a wide range of device geometries and also used to analyze the effect of geometry variation on the threshold voltage.
Resumo:
Following considerations of geometry and the similarity between chromate and carbonate groups in terms of size and charge, we have investigated the possibility of replacing the two-coordinate Cu-I in superconducting lead cuprates of the general formula Pb2Sr2(Ca, Y)CU3O8 by Cr. A high-resolution electron microscopy study coupled with energy dispersive X-ray analysis on small crystals of the title phases suggests that between 10 and 15% of the Cu-I can be replaced by Cr. While from the present structural study using HRTEM and Rietveld refinement of X-ray powder data we are unable to precisely obtain the oxidation state and oxygen coordination of Cr, we suggest in analogy with Cr substitution in other similar cuprates that in the title phases (CuO2)-O-I rods are partially replaced by tetrahedral CrO42- groups. Infrared spectroscopy supports the presence of CrO42- groups. The phases Pb1.75Sr2Ca0.2Y0.8O8+delta and Pb1.75Sr2Ca0.2Y0.8CCu2.85Cr0.15O8+delta are superconducting as-prepared, but the substitution of Cr for Cu-I results in a decrease of the Te as well as the superconducting volume fraction. (C) 1996 Academic Press, lnc.
Resumo:
Theoretically calculated previous termlone-pairnext term splittings in H2O2, H2S2, N2H4, P2H4, glyoxal and dithioglyoxal have been compared with experimental values. Potential functions for rotation and the effect of geometry relaxation on rotomer energies have also been examined.
Resumo:
Carbon nanotubes (CNTs) have emerged as promising candidates for biomedical x-ray devices and other applications of field emission. CNTs grown/deposited in a thin film are used as cathodes for field emission. In spite of the good performance of such cathodes, the procedure to estimate the device current is not straightforward and the required insight towards design optimization is not well developed. In this paper, we report an analysis aided by a computational model and experiments by which the process of evolution and self-assembly (reorientation) of CNTs is characterized and the device current is estimated. The modeling approach involves two steps: (i) a phenomenological description of the degradation and fragmentation of CNTs and (ii) a mechanics based modeling of electromechanical interaction among CNTs during field emission. A computational scheme is developed by which the states of CNTs are updated in a time incremental manner. Finally, the device current is obtained by using the Fowler–Nordheim equation for field emission and by integrating the current density over computational cells. A detailed analysis of the results reveals the deflected shapes of the CNTs in an ensemble and the extent to which the initial state of geometry and orientation angles affect the device current. Experimental results confirm these effects.
Resumo:
It is found that the inclusion of higher derivative terms in the gravitational action along with concepts of phase transition and spontaneous symmetry breaking leads to some novel consequence. The Ricci scalar plays the dual role, like a physical field as well as a geometrical field. One gets Klein-Gordon equation for the emerging field and the corresponding quanta of geometry are called Riccions. For the early universe the model removes singularity along with inflation. In higher dimensional gravity the Riccions can break into spin half particle and antiparticle along with breaking of left-right symmetry. Most tantalizing consequences is the emergence of the physical universe from the geometry in the extreme past. Riccions can Bose condense and may account for the dark matter.
Resumo:
Systematic investigation on synergetic effects of geometry, length, denticity, and asymmetry of donors was performed through the formation of a series of uncommon Pd-II aggregates by employing the donor in a multicomponent self-assembly of a cis-blocked 90 degrees Pd-II acceptor and a tetratopic donor. Some of these assemblies represent the first examples of these types of structures, and their formation is not anticipated by only taking the geometry of the donor and the acceptor building units into account. Analysis of the crystal packing of the X-ray structure revealed several H bonds between the counteranions (NO3-) and water molecules (OHON). Moreover, H-bonded 3D-networks of water are present in the molecular pockets, which show water-adsorption properties with some variation in water affinity. Interestingly, these complexes exhibit proton conductivity (1.87x10(-5)-6.52x10(-4)Scm(-1)) at 296K and low relative humidity (ca. 46%) with activation energies of 0.29-0.46eV. Moreover, the conductivities further increase with the enhancement of humidity. The ability of these assemblies to exhibit proton-conducting properties under low-humidity conditions makes these materials highly appealing as electrolytes in batteries and in fuel-cell applications.