5 resultados para Teachers, Foreign - Taiwan

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The baculovirus expression system using the Autographa californica nuclear polyhedrosis virus (AcNPV) has been extensively utilized for high-level expression of cloned foreign genes, driven by the strong viral promoters of polyhedrin (polh) and p10 encoding genes. A parallel system using Bombyx mori nuclear polyhedrosis virus (BmNPV) is much less exploited because the choice and variety of BmNPV-based transfer vectors are limited. Using a transient expression assay, we have demonstrated here that the heterologous promoters of the very late genes polh and p10 from AcNPV function as efficiently in BmN cells as the BmNPV promoters. The location of the cloned foreign gene with respect to the promoter sequences was critical for achieving the highest levels of expression, following the order +35 > +1 > -3 > -8 nucleotides (nt) with respect to the polh or p10 start codons. We have successfully generated recombinant BmNPV harboring AcNPV promoters by homeologous recombination between AcNPV-based transfer vectors and BmNPV genomic DNA. Infection of BmN cell lines with recombinant BmNPV showed a temporal expression pattern, reaching very high levels in 60-72 h post infection. The recombinant BmNPV harboring the firefly luciferase-encoding gene under the control of AcNPV polh or p10 promoters, on infection of the silkworm larvae led to the synthesis of large quantities of luciferase. Such larvae emanated significant luminiscence instantaneously on administration of the substrate luciferin resulting in 'glowing silkworms'. The virus-infected larvae continued to glow for several hours and revealed the most abundant distribution of virus in the fat bodies. In larval expression also, the highest levels were achieved when the reporter gene was located at +35 nt of the polh.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a prelude to achieving transgenesis in Bombyx mori, conditions have been established for successful microinjection of cloned foreign genes into the silk worm eggs. A sharpened metallic needle is used to pierce the thick chorion layer of the eggsheil, approaching through a droplet of DNA solution deposited on its surface. The microinjection is carried out within 2-2.5 h after oviposition and the injected eggs show 3-5% hatchability and 80-90% survival. Such larvae continuously expressed the microinjected cloned reporter gene, beta-galactosidase, placed under the control of a constitutively expressed cytoplasmic actin A3 gene promoter from B. mori. The expression is seen in different tissues, viz. the fat body, tracheae and the silk glands, till the late larval instars. The microinjected DNA sequences are retained in the adult G(o) moths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a continuous surge toward developing new biopolymers that exhibit better in vivo biocompatibility properties in terms of demonstrating a reduced foreign body response (FBR). One approach to mitigate the undesired FBR is to develop an implant capable of releasing anti-inflammatory molecules in a sustained manner over a long time period. Implants causing inflammation are also more susceptible to infection. In this article, the in vivo biocompatibility of a novel, biodegradable salicylic acid releasing polyester (SAP) has been investigated by subcutaneous implantation in a mouse model. The tissue response to SAP was compared with that of a widely used biodegradable polymer, poly(lactic acid-co-glycolic acid) (PLGA), as a control over three time points: 2, 4, and 16 weeks postimplantation. A long-term in vitro study illustrates a continuous, linear (zero order) release of salicylic acid with a cumulative mass percent release rate of 7.34 x 10(-4) h(-1) over similar to 1.5-17 months. On the basis of physicochemical analysis, surface erosion for SAP and bulk erosion for PLGA have been confirmed as their dominant degradation modes in vivo. On the basis of the histomorphometrical analysis of inflammatory cell densities and collagen distribution as well as quantification of proinflammatory cytokine levels (TNF-alpha and IL-1 beta), a reduced foreign body response toward SAP with respect to that generated by PLGA has been unambiguously established. The favorable in vivo tissue response to SAP, as manifest from the uniform and well-vascularized encapsulation around the implant, is consistent with the decrease in inflammatory cell density and increase in angiogenesis with time. The above observations, together with the demonstration of long-term and sustained release of salicylic acid, establish the potential use of SAP for applications in improved matrices for tissue engineering and chronic wound healing.