3 resultados para Tangent piano
em Indian Institute of Science - Bangalore - Índia
Resumo:
In computational mechanics, finite rotations are often represented by rotation vectors. Rotation vector increments corresponding to different tangent: spaces are generally related by a linear operator, known as the tangential transformation T. In this note, we derive the higher order terms that are usually left out in linear relation. The exact nonlinear relation is also presented. Errors via the linearized T are numerically estimated. While the concept of T arises out of the nonlinear characteristics of the rotation manifold, it has been derived via tensor analysis in the context of computational mechanics (Cardona and Geradin, 1988). We investigate the operator T from a Lie group perspective, which provides a better insight and a 1-1 correspondence between approaches based on tensor analysis and the standard matrix Lie group theory. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a new voltage stability index based on the tangent vector of the power flow jacobian. This index is capable of providing the relative vulnerability information of the system buses from the point of view of voltage collapse. In an effort to compare this index with a similar index, the popular voltage stability index L is studied and it is shown through system studies that the L index is not a very consistent indicator of the voltage collapse point of the system but is only a reasonable indicator of the vulnerability of the system buses to voltage collapse. We also show that the new index can be used in the voltage stability analysis of radial systems which is not possible with the L index. This is a significant result of this investigation since there is a lot of contemporary interest in distributed generation and microgrids which are by and large radial in nature. Simulation results considering several test systems are provided to validate the results and the computational needs of the proposed scheme is assessed in comparison with other schemes
Resumo:
In this paper, we derive analytical expressions for mass and stiffness functions of transversely vibrating clamped-clamped non-uniform beams under no axial loads, which are isospectral to a given uniform axially loaded beam. Examples of such axially loaded beams are beam columns (compressive axial load) and piano strings (tensile axial load). The Barcilon-Gottlieb transformation is invoked to transform the non-uniform beam equation into the axially loaded uniform beam equation. The coupled ODEs involved in this transformation are solved for two specific cases (pq (z) = k (0) and q = q (0)), and analytical solutions for mass and stiffness are obtained. Examples of beams having a rectangular cross section are shown as a practical application of the analysis. Some non-uniform beams are found whose frequencies are known exactly since uniform axially loaded beams with clamped ends have closed-form solutions. In addition, we show that the tension required in a stiff piano string with hinged ends can be adjusted by changing the mass and stiffness functions of a stiff string, retaining its natural frequencies.