7 resultados para Tame Automorphisms

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let X be a geometrically irreductble smooth projective cruve defined over R. of genus at least 2. that admits a nontrivial automorphism, sigma. Assume that X does not have any real points. Let tau be the antiholomorphic involution of the complexification lambda(C) of X. We show that if the action of sigma on the set S(X) of all real theta characteristics of X is trivial. then the order of sigma is even, say 2k and the automorphism tau o (sigma) over cap (lambda) of X-C has a fixed point, where (sigma) over cap is the automorphism of X x C-R defined by sigma We then show that there exists X with a real point and admitting a nontrivial automorphism sigma, such that the action of sigma on S(X) is trivial, while X/ not equal P-R(1) We also give an example of X with no real points and admitting a nontrivial automorphisim sigma such that the automorphism tau o (sigma) over cap (lambda) has a fixed point, the action of sigma on S(X) is trivial, and X/ not equal P-R(1)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many grand unified theories (GUT's) predict non-Abelian monopoles which are sources of non-Abelian (and Abelian) magnetic flux. In the preceding paper, we discussed in detail the topological obstructions to the global implementation of the action of the "unbroken symmetry group" H on a classical test particle in the field of such a monopole. In this paper, the existence of similar topological obstructions to the definition of H action on the fields in such a monopole sector, as well as on the states of a quantum-mechanical test particle in the presence of such fields, are shown in detail. Some subgroups of H which can be globally realized as groups of automorphisms are identified. We also discuss the application of our analysis to the SU(5) GUT and show in particular that the non-Abelian monopoles of that theory break color and electroweak symmetries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let D be a bounded domain in C 2 with a non-compact group of holomorphic automorphisms. Model domains for D are obtained under the hypotheses that at least one orbit accumulates at a boundary point near which the boundary is smooth, real analytic and of finite type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let X be an arbitrary complex surface and D a domain in X that has a non-compact group of holomorphic automorphisms. A characterization of those domains D that admit a smooth, weakly pseudoconvex, finite type boundary orbit accumulation point is obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this article is to consider two themes, both of which emanate from and involve the Kobayashi and the Carath,odory metric. First, we study the biholomorphic invariant introduced by B. Fridman on strongly pseudoconvex domains, on weakly pseudoconvex domains of finite type in C (2), and on convex finite type domains in C (n) using the scaling method. Applications include an alternate proof of the Wong-Rosay theorem, a characterization of analytic polyhedra with noncompact automorphism group when the orbit accumulates at a singular boundary point, and a description of the Kobayashi balls on weakly pseudoconvex domains of finite type in C (2) and convex finite type domains in C (n) in terms of Euclidean parameters. Second, a version of Vitushkin's theorem about the uniform extendability of a compact subgroup of automorphisms of a real analytic strongly pseudoconvex domain is proved for C (1)-isometries of the Kobayashi and Carath,odory metrics on a smoothly bounded strongly pseudoconvex domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling alpha(s) and other QCD parameters from the hadronic decays of the tau lepton. Motivated by the recent analyses of a large class of moments in the standard fixed-order and contour-improved perturbation theories, we consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher-order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called ``reference model,'' including moments that are poorly described by the standard expansions. The results provide additional support for the plausibility of the description of the Adler function in terms of a small number of dominant renormalons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let X be an arbitrary complex surface and D subset of X a domain that has a noncompact group of holomorphic automorphisms. A characterization of those domains D that admit a smooth real analytic, finite type, boundary orbit accumulation point and whose closures are contained in a complete hyperbolic domain D' subset of X is obtained.