8 resultados para TRIANGULATIONS
em Indian Institute of Science - Bangalore - Índia
Resumo:
We present two constructions in this paper: (a) a 10-vertex triangulation CP(10)(2) of the complex projective plane CP(2) as a subcomplex of the join of the standard sphere (S(4)(2)) and the standard real projective plane (RP(6)(2), the decahedron), its automorphism group is A(4); (b) a 12-vertex triangulation (S(2) x S(2))(12) of S(2) x S(2) with automorphism group 2S(5), the Schur double cover of the symmetric group S(5). It is obtained by generalized bistellar moves from a simplicial subdivision of the standard cell structure of S(2) x S(2). Both constructions have surprising and intimate relationships with the icosahedron. It is well known that CP(2) has S(2) x S(2) as a two-fold branched cover; we construct the triangulation CP(10)(2) of CP(2) by presenting a simplicial realization of this covering map S(2) x S(2) -> CP(2). The domain of this simplicial map is a simplicial subdivision of the standard cell structure of S(2) x S(2), different from the triangulation alluded to in (b). This gives a new proof that Kuhnel's CP(9)(2) triangulates CP(2). It is also shown that CP(10)(2) and (S(2) x S(2))(12) induce the standard piecewise linear structure on CP(2) and S(2) x S(2) respectively.
Resumo:
Finding vertex-minimal triangulations of closed manifolds is a very difficult problem. Except for spheres and two series of manifolds, vertex-minimal triangulations are known for only few manifolds of dimension more than 2 (see the table given at the end of Section 5). In this article, we present a brief survey on the works done in last 30 years on the following:(i) Finding the minimal number of vertices required to triangulate a given pl manifold. (ii) Given positive integers n and d, construction of n-vertex triangulations of different d-dimensional pl manifolds. (iii) Classifications of all the triangulations of a given pl manifold with same number of vertices.In Section 1, we have given all the definitions which are required for the remaining part of this article. A reader can start from Section 2 and come back to Section 1 as and when required. In Section 2, we have presented a very brief history of triangulations of manifolds. In Section 3,we have presented examples of several vertex-minimal triangulations. In Section 4, we have presented some interesting results on triangulations of manifolds. In particular, we have stated the Lower Bound Theorem and the Upper Bound Theorem. In Section 5, we have stated several results on minimal triangulations without proofs. Proofs are available in the references mentioned there. We have also presented some open problems/conjectures in Sections 3 and 5.
Resumo:
We give explicit construction of vertex-transitive tight triangulations of d-manifolds for d >= 2. More explicitly, for each d >= 2, we construct two (d(2) + 5d + 5)-vertex neighborly triangulated d-manifolds whose vertex-links are stacked spheres. The only other non-trivial series of such tight triangulated manifolds currently known is the series of non-simply connected triangulated d-manifolds with 2d + 3 vertices constructed by Kuhnel. The manifolds we construct are strongly minimal. For d >= 3, they are also tight neighborly as defined by Lutz, Sulanke and Swartz. Like Kuhnel complexes, our manifolds are orientable in even dimensions and non-orientable in odd dimensions. (c) 2013 Elsevier Inc. All rights reserved.
Resumo:
Small covers were introduced by Davis and Januszkiewicz in 1991. We introduce the notion of equilibrium triangulations for small covers. We study equilibrium and vertex minimal 4-equivariant triangulations of 2-dimensional small covers. We discuss vertex minimal equilibrium triangulations of RP3#RP3, S-1 x RP2 and a nontrivial S-1 bundle over RP2. We construct some nice equilibrium triangulations of the real projective space RPn with 2(n) + n 1 vertices. The main tool is the theory of small covers.
Resumo:
A triangulated d-manifold K, satisfies the inequality for da parts per thousand yen3. The triangulated d-manifolds that meet the bound with equality are called tight neighbourly. In this paper, we present tight neighbourly triangulations of 4-manifolds on 15 vertices with as an automorphism group. One such example was constructed by Bagchi and Datta (Discrete Math. 311 (citeyearbd102011) 986-995). We show that there are exactly 12 such triangulations up to isomorphism, 10 of which are orientable.
Resumo:
A triangulation of a closed 2-manifold is tight with respect to a field of characteristic two if and only if it is neighbourly; and it is tight with respect to a field of odd characteristic if and only if it is neighbourly and orientable. No such characterization of tightness was previously known for higher dimensional manifolds. In this paper, we prove that a triangulation of a closed 3-manifold is tight with respect to a field of odd characteristic if and only if it is neighbourly, orientable and stacked. In consequence, the Kuhnel-Lutz conjecture is valid in dimension three for fields of odd characteristic. Next let F be a field of characteristic two. It is known that, in this case, any neighbourly and stacked triangulation of a closed 3-manifold is F-tight. For closed, triangulated 3-manifolds with at most 71 vertices or with first Betti number at most 188, we show that the converse is true. But the possibility of the existence of an F-tight, non-stacked triangulation on a larger number of vertices remains open. We prove the following upper bound theorem on such triangulations. If an F-tight triangulation of a closed 3-manifold has n vertices and first Betti number beta(1), then (n - 4) (617n - 3861) <= 15444 beta(1). Equality holds here if and only if all the vertex links of the triangulation are connected sums of boundary complexes of icosahedra. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Topology-based methods have been successfully used for the analysis and visualization of piecewise-linear functions defined on triangle meshes. This paper describes a mechanism for extending these methods to piecewise-quadratic functions defined on triangulations of surfaces. Each triangular patch is tessellated into monotone regions, so that existing algorithms for computing topological representations of piecewise-linear functions may be applied directly to the piecewise-quadratic function. In particular, the tessellation is used for computing the Reeb graph, a topological data structure that provides a succinct representation of level sets of the function.