475 resultados para TEMPLATE SYNTHESIS

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report the synthesis of barium zirconate, BaZrO3, (BZ) nanotubes fabricated by the modified sol-gel method within the nanochannels of anodic aluminum oxide (AAO) templates. The morphology, structure, and composition of as prepared nanotubes were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), selected-area electron diffraction ( SAED), high resolution TEM (HRTEM) and energy-dispersive X-ray spectroscopy (EDX). The results of XRD and SAED indicated that postannealed (at 650 degrees C for 1 h) BZ nanotubes (BZNTs) exhibited a polycrystalline cubic perovskite crystal structure. SEM and TEM analysis revealed that BZNTs possessed a uniform length and diameter (similar to 200 nm) and the thickness of the wall of the BZNTs was about 20 nm. Y-junctions, multiple branching and typical T-junctions were also observed in some BZNTs. EDX analysis demonstrated that stoichiometric BaZrO3 was formed. HRTEM image confirmed that the obtained BZNTs were composed of nanoparticles in the range of 5-10 nm. The possible formation mechanism of BZNTs was discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two new copper(II) complexes, [Cu-2(L-1)(2)](ClO4)(2) (1) and [Cu(L-2)(ClO4)] (2), of the highly unsymmetrical tetradentate (N3O) Schiff base ligands HL1 and HL2 (where HL1 = N-(2-hydroxyacetophenone)-bis-3-aminopropylamine and HL2 = N-(salicyldehydine)-bis-3-aminopropylamine) have been synthesised using a template method. Their single crystal X-ray structures show that in complex 1 two independent copper(II) centers are doubly bridged through sphenoxo-O atoms (O1A and O1B) of the two ligands and each copper atom is five-coordinated with a distorted square pyramidal geometry. The asymmetric unit of complex 2 consists of two crystallographically independe N-(salicylidene) bis(aminopropyl)amine-copper(II) molecules, A and B, with similar square pyramidal geometries. Cryomagnetic susceptibility measurements (5-300 K) on complex 1 reveal a distinct antiferromagnetic interaction with J=-23.6 cm(-1), which is substantiated by a DFT calculation (J=-27.6 cm(-1)) using the B3LYP functional. Complex 1, immobilized over highly ordered hexagonal mesoporous silica, shows moderate catalytic activity for the epoxidation of cyclohexene and styrene in the presence of TBHP as an oxidant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anion directed, template syntheses of two dinuclear copper(II) complexes of mono-condensed Schiff base ligand Hdipn (4-[(3-aminopentylimino)-methyl]-benzene-1,3-diol) involving 2,4- dihydroxybenzaldehyde and 1,3-diaminopentane were realized in the presence of bridging azide and acetate anions. Both complexes, [Cu-2(dipn)(2)(N-3)(2)] (1) and [Cu-2(dip(n))(2)(OAc)(2)] (2) have been characterized by X-ray crystallography. The two mononuclear units are joined together by basal-apical, double end-on azido bridges in complex 1 and by basal-apical, double mono-atomic acetate oxygen-bridges in 2. Both complexes form rectangular grid-like supramolecular structures via H-bonds connecting the azide or acetate anion and the p-hydroxy group of 2,4- dihydroxybenzaldehyde. Variable-temperature (300-2 K) magnetic susceptibility measurements reveal that complex 1 has antiferromagnetic coupling (J = -2.10 cm (1)) through the azide bridge while 2 has intra-dimer ferromagnetic coupling through the acetate bridge and inter-dimer antiferromagnetic coupling through H-bonds (J = 2.85 cm (1), J' = -1.08 cm (1)). (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two binuclear copper(II) complexes one (complex 1) with a macrocyclic ligand (H(2)L1) and other (complex 2) with a macroacyclic (end-off type) compartmental ligand (HL2) have been synthesized from single pot template synthesis involving copper(II) nitrate, 1,2diaminoethane, 4-methyl-2,6-diformylphenol, and sodium azide. Structure analysis of complex I reveals that there are actually two half molecules present in the asymmetric unit and so two complexes (molecule-I and molecule-II) are present in unit cell, although they show slight differences. The two Cu(II) centers are in distorted square pyramidal coordination environment with two endogenous phenoxo bridges provided by the phenolate of H(2)L1 I having Cu-Cu separations of 2.9133(10) angstrom and 2.9103(10) in the two molecules. In complex 2 the coordination environments around two Cu(II) centers are asymmetric, Cu1 is in distorted square pyramidal environment whereas, the coordination environment around Cu2 is distorted octahedral. The two Cu(II) centers in complex 2 are connected by two different kinds of bridges, one is endogenous phenoxo bridge provided by the phenolate of the ligand HL2 and the other is exogenous azido bridge (mu-(1),(l) type) with Cu-Cu distance of 3.032(10) angstrom. Variable temperature magnetic studies show that two Cu(II) centers in both the complexes are strongly antiferromagnetically coupled with J = -625 +/- 5 cm(-1) and J = -188.6 +/- 1cm(-1) for complex 1 and 2, respectively. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proteins are polymerized by cyclic machines called ribosomes, which use their messenger RNA (mRNA) track also as the corresponding template, and the process is called translation. We explore, in depth and detail, the stochastic nature of the translation. We compute various distributions associated with the translation process; one of them-namely, the dwell time distribution-has been measured in recent single-ribosome experiments. The form of the distribution, which fits best with our simulation data, is consistent with that extracted from the experimental data. For our computations, we use a model that captures both the mechanochemistry of each individual ribosome and their steric interactions. We also demonstrate the effects of the sequence inhomogeneities of real genes on the fluctuations and noise in translation. Finally, inspired by recent advances in the experimental techniques of manipulating single ribosomes, we make theoretical predictions on the force-velocity relation for individual ribosomes. In principle, all our predictions can be tested by carrying out in vitro experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanocrystalline perovskite barium titanate with an average particle size less than similar to 10 nm is produced using sol-gel route involving ligand-assisted templating. BaTiO3 is obtained by the controlled hydrolysis and condensation reaction of barium acetate (Ba(CH3COO)(2)) with titanium tetra chloride (TiCl4) in the reverse micelles of dodecylamine (DDA) which is used as the template. Our attempts to produce mesoporous BaTiO3 have resulted in the formation of nanocrystalline BaTiO3. The synthesis of nanostructured BaTiO3 is carried out using the ligand-assisted templating approach which proceeds through the sol-gel route. Dodecylamine is used as the template. The sol-gel process in general presents inherent advantages because the nanostructure of the desired materials can be controlled together with their porous structure. Ligand-assisted templating approach involves the formation of covalent bond between the inorganic analogue and the template. Ba(CH3COO)(2) and TiCl4 are used as barium-source and titanium-source respectively. The reaction between Ba(CH3COO)(2) and TiCl4 is found to take place deliberately on the pre-assembled species which acts as the template or occurring with in them which in turn will lead to the generation of the desired nanoscale structure (nanopores or nanoparticles).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An oxidative binaphthol coupling with 65% yield and 65% selectivity has been accomplished using 7-deoxycholic acid as a chiral template.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lithium-rich manganese oxide (Li2MnO3) is prepared by reverse microemulsion method employing Pluronic acid (P123) as a soft template and studied as a positive electrode material. The as-prepared sample possesses good crystalline structure with a broadly distributed mesoporosity but low surface area. As expected, cyclic voltammetry and charge-discharge data indicate poor electrochemical activity. However, the sample gains surface area with narrowly distributed mesoporosity and also electrochemical activity after treating in 4 M H2SO4. A discharge capacity of about 160 mAh g(-1) is obtained. When the acid-treated sample is heated at 300 A degrees C, the resulting porous sample with a large surface area and dual porosity provides a discharge capacity of 240 mAh g(-1). The rate capability study suggests that the sample provides about 150 mAh g(-1) at a specific discharge current of 1.25 A g(-1). Although the cycling stability is poor, the high rate capability is attributed to porous nature of the material.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A porous layered composite of Li2MnO3 and LiMn1/3Co1/3Ni1/3O2 (composition: Li1.2Mn0.53Ni0.13Co0.13O2) is prepared by reverse microemulsion method employing a soft polymer template and studied as a positive electrode material. The precursor is heated at several temperatures between 500 and 900 degrees C. The product samples possess mesoporosity with broadly distributed pores of about 30 nm diameters. There is a decrease in pore volume as well as in surface area by increasing the temperature of preparation. Nevertheless, the electrochemical activity of the composite increases with an increase in temperature. The discharge capacity values of the samples prepared at 800 and 900 degrees C are about 250 mAh g(-1) at a specific current of 40 mA g(-1) with an excellent cycling stability. A value of 225 mAh g(-1) is obtained at the end of 30 charge-discharge cycles. Both these composite samples possess high rate capability, but the 800 degrees C sample is marginally superior to the 900 degrees C sample. A discharge capacity of 100 mAh g(-1) is obtained at a specific current of 1000 mA g(-1). The high rate capability is attributed to porous nature of the composite samples. (C) 2013 The Electrochemical Society. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hollow nanomaterials have attracted a lot of interest by virtue of their wide range of applications that arise primarily due to their unique architecture. A common strategy to synthesize hollow nanomaterials is by nucleation of the shell material over a preformed core and subsequent dissolution of the core in the second step. Herein an ultrafast, microwave route has been demonstrated, to synthesize PdO nanotubes in a single step using ZnO as a sacrificial template. The mechanism of the nanotube formation has been investigated in detail using control experiments. By tuning the starting ratio of PdCl2 : ZnO, hollow to hybrid PdO nanostructures could be obtained using the same method. Conversion of the PdO to Pd nanotubes has been shown by simple NaBH4 treatment. The thermal stability of the PdO nanotubes has been studied. The insights presented here are general and applicable for the synthesis of hybrids/hollow structures in other systems as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the synthesis and structural characterization of ferroelectric bismuth vanadate (Bi2VO5.5) (BVO) nanotubes within the nanoporous anodic aluminum oxide (AAO) templates via sol-gel method. The as-prepared BVO nanotubes were characterized by X-ray powder diffraction (XRD), Scanning Electron Microscope (SEM), High-Resolution Transmission Electron Microscope (HRTEM) and the stoichiometry of the nanotubes was established by energy-dispersive X-ray spectroscopy (EDX). Postannealed (675 degrees C for 1 h), BVO nanotubes were a polycrystalline and the XRD studies confirmed the crystal structure to be orthorhombic. The uniformity in diameter and length of the nanotubes as reveled by the TEM and SEM suggested that these were influenced to a guest extent by the thickness and pore diameter of the nanoporous AAO template. EDX analysis demonstrated the formation of stoichiometric Bi2VO5.5 phase. HRTEM confirmed that the obtained BVO nanotubes were made up of nanoparticles of 5-9 nm range. The possible formation mechanism of nanotubes was elucidated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnO nanoneedles were successfully deposited on flexible polymer substrates at room temperature by activated reactive evaporation. Neither a catalyst nor a template was employed in this synthesis. These synthesized needles measured 500 - 600 nm in length and its diameter varied from 30 - 15 nm from the base to the tip. The single-crystalline nature of the nanoneedle was observed by high-resolution transmission electron microscopy studies. The Raman studies on these nanoneedles had shown that they are oxygen deficient in nature. A possible growth mechanism has been proposed here, in which the nanoneedles nucleate and grow in the gas phase by vapor-solid mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Layered LiNi1/3Co1/3Mn1/3O2, which is isostructural with LiCoO2, is considered as a potential cathode material for Li-ion batteries. Submicrometer sized porous particles are useful for high discharge rates. The present work involves a synthesis of submicrometer sized porous particles of LiNi1/3Co1/3Mn1/3O2 using a triblock copolymer as a soft template. The precursor obtained from the reaction is heated at different temperatures between 600 and 900 degrees C for 6 h to get the final product samples. The compound attains increased crystallinity with an increase in the temperature of preparation. However, there is a decrease in the surface area and also in the porosity of the sample. Nevertheless, the LiNi1/3Co1/3Mn1/3O2 sample prepared at 900 degrees C exhibits a high rate capability and stable capacity retention on cycling. The electrochemical performance of LiNi1/3Co1/3Mn1/3O2 prepared in the absence of the polymer template is inferior to that of the sample prepared in the presence of the polymer template. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3364944] All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Specific penicillin-carrier receptor proteins (CRP) have been isolated from the sera of penicillin allergic rabbits and human subjects in the unconjugated native state in electrophoretically homogeneous form by employing a synthetic polymeric affinity template containing the 7-deoxy analogue of penicillin G. The synthesis of the 7-deoxy analogue has been described. In this affinity system the antipenicillin-antibody is desorbed by 0·9M thiourea and the CRP in 8M urea. The CRP after incubation with penicillin is converted into the full-fledged antigen. Studies on the origin of CRP and the nature of antibody as well as comparative studies on the properties of the rabbit antibody and those of antibodies elicited by a BSA-BPO conjugate are reported.