22 resultados para TAIWAN
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper investigates the problem of designing reverse channel training sequences for a TDD-MIMO spatial-multiplexing system. Assuming perfect channel state information at the receiver and spatial multiplexing at the transmitter with equal power allocation to them dominant modes of the estimated channel, the pilot is designed to ensure an stimate of the channel which improves the forward link capacity. Using perturbation techniques, a lower bound on the forward link capacity is derived with respect to which the training sequence is optimized. Thus, the reverse channel training sequence makes use of the channel knowledge at the receiver. The performance of orthogonal training sequence with MMSE estimation at the transmitter and the proposed training sequence are compared. Simulation results show a significant improvement in performance.
Resumo:
Using analysis-by-synthesis (AbS) approach, we develop a soft decision based switched vector quantization (VQ) method for high quality and low complexity coding of wideband speech line spectral frequency (LSF) parameters. For each switching region, a low complexity transform domain split VQ (TrSVQ) is designed. The overall rate-distortion (R/D) performance optimality of new switched quantizer is addressed in the Gaussian mixture model (GMM) based parametric framework. In the AbS approach, the reduction of quantization complexity is achieved through the use of nearest neighbor (NN) TrSVQs and splitting the transform domain vector into higher number of subvectors. Compared to the current LSF quantization methods, the new method is shown to provide competitive or better trade-off between R/D performance and complexity.
Resumo:
Compressive sensing (CS) has been proposed for signals with sparsity in a linear transform domain. We explore a signal dependent unknown linear transform, namely the impulse response matrix operating on a sparse excitation, as in the linear model of speech production, for recovering compressive sensed speech. Since the linear transform is signal dependent and unknown, unlike the standard CS formulation, a codebook of transfer functions is proposed in a matching pursuit (MP) framework for CS recovery. It is found that MP is efficient and effective to recover CS encoded speech as well as jointly estimate the linear model. Moderate number of CS measurements and low order sparsity estimate will result in MP converge to the same linear transform as direct VQ of the LP vector derived from the original signal. There is also high positive correlation between signal domain approximation and CS measurement domain approximation for a large variety of speech spectra.
Resumo:
We consider the problem of goal seeking by robots in unknown environments. We present a frontier based algorithm for finding a route to a goal in a fully unknown environment, where information about the goal region (GR), the region where the goal is most likely to be located, is available. Our algorithm efficiently chooses the best candidate frontier cell, which is on the boundary between explored space and unexplored space, having the maximum ``goal seeking index'', to reach the goal in minimal number of moves. Modification of the algorithm is also proposed to further reduce the number of moves toward the goal. The algorithm has been tested extensively in simulation runs and results demonstrate that the algorithm effectively directs the robot to the goal and completes the search task in minimal number of moves in bounded as well as unbounded environments. The algorithm is shown to perform as well as a state of the art agent centered search algorithm RTAA*, in cluttered environments if exact location of the goal is known at the beginning of the mission and is shown to perform better in uncluttered environments.
Resumo:
This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT) data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN) based on multi-layer perceptions (MLP) that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM) that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT (N-1)(60)] and cyclic stress ratio (CSR). Further, an attempt has been made to simplify the models, requiring only the two parameters (N-1)(60) and peck ground acceleration (a(max)/g)], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.
Resumo:
A number of geophysical methods have been proposed for near-surface site characterization and measurement of shear wave velocity by using a great variety of testing configurations, processing techniques,and inversion algorithms. In particular, two widely-used techniques are SASW (Spectral Analysis of SurfaceWaves) and MASW (Multichannel Analysis of SurfaceWaves). MASW is increasingly being applied to earthquake geotechnical engineering for the local site characterization, microzonation and site response studies.A MASW is a geophysical method, which generates a shear-wave velocity (Vs) profile (i.e., Vs versus depth)by analyzing Raleigh-type surface waves on a multichannel record. MASW system consisting of 24 channels Geode seismograph with 24 geophones of 4.5 Hz frequency have been used in this investigation. For the site characterization program, the MASW field experiments consisting of 58 one-dimensional shear wave velocity tests and 20 two-dimensional shear wave tests have been carried out. The survey points have been selected in such a way that the results supposedly represent the whole metropolitan Bangalore having an area of 220 km2.The average shear wave velocity of Bangalore soils have been evaluated for depths of 5m, 10m, 15m, 20m, 25m and 30 m. The subsoil site classification has been made for seismic local site effect evaluation based on average shear wave velocity of 30m depth (Vs30) of sites using National Earthquake Hazards Reduction Program (NEHRP) and International Building Code (IBC) classification. Soil average shearwave velocity estimated based on overburden thickness from the borehole information is also presented. Mapping clearly indicates that the depth of soil obtained from MASW is closely matching with the soil layers in bore logs. Among total 55 locations of MASW survey carried out, 34 locations were very close to the SPT borehole locations and these are used to generate correlation between Vs and corrected “N” values. The SPT field “N” values are corrected by applying the NEHRP recommended corrections.
Resumo:
This research is designed to develop a new technique for site characterization in a three-dimensional domain. Site characterization is a fundamental task in geotechnical engineering practice, as well as a very challenging process, with the ultimate goal of estimating soil properties based on limited tests at any half-space subsurface point in a site.In this research, the sandy site at the Texas A&M University's National Geotechnical Experimentation Site is selected as an example to develop the new technique for site characterization, which is based on Artificial Neural Networks (ANN) technology. In this study, a sequential approach is used to demonstrate the applicability of ANN to site characterization. To verify its robustness, the proposed new technique is compared with other commonly used approaches for site characterization. In addition, an artificial site is created, wherein soil property values at any half-space point are assumed, and thus the predicted values can compare directly with their corresponding actual values, as a means of validation. Since the three-dimensional model has the capability of estimating the soil property at any location in a site, it could have many potential applications, especially in such case, wherein the soil properties within a zone are of interest rather than at a single point. Examples of soil properties of zonal interest include soil type classification and liquefaction potential evaluation. In this regard, the present study also addresses this type of applications based on a site located in Taiwan, which experienced liquefaction during the 1999 Chi-Chi, Taiwan, Earthquake.
Resumo:
We give an efficient randomized algorithm to construct a box representation of any graph G on n vertices in $1.5 (\Delta + 2) \ln n$ dimensions, where $\Delta$ is the maximum degree of G. We also show that $\boxi(G) \le (\Delta + 2) \ln n$ for any graph G. Our bound is tight up to a factor of $\ln n$. We also show that our randomized algorithm can be derandomized to get a polynomial time deterministic algorithm. Though our general upper bound is in terms of maximum degree $\Delta$, we show that for almost all graphs on n vertices, its boxicity is upper bound by $c\cdot(d_{av} + 1) \ln n$ where d_{av} is the average degree and c is a small constant. Also, we show that for any graph G, $\boxi(G) \le \sqrt{8 n d_{av} \ln n}$, which is tight up to a factor of $b \sqrt{\ln n}$ for a constant b.
Resumo:
Editors' note:Flexible, large-area display and sensor arrays are finding growing applications in multimedia and future smart homes. This article first analyzes and compares current flexible devices, then discusses the implementation, requirements, and testing of flexible sensor arrays.—Jiun-Lang Huang (National Taiwan University) and Kwang-Ting (Tim) Cheng (University of California, Santa Barbara)
Resumo:
We analyze the performance of an SIR based admission control strategy in cellular CDMA systems with both voice and data traffic. Most studies In the current literature to estimate CDMA system capacity with both voice and data traf-Bc do not take signal-tlFlnterference ratio (SIR) based admission control into account In this paper, we present an analytical approach to evaluate the outage probability for voice trafllc, the average system throughput and the mean delay for data traffic for a volce/data CDMA system which employs an SIR based admission controL We show that for a dataaniy system, an improvement of about 25% In both the Erlang capacity as well as the mean delay performance is achieved with an SIR based admission control as compared to code availability based admission control. For a mixed voice/data srtem with 10 Erlangs of voice traffic, the Lmprovement in the mean delay performance for data Is about 40%.Ah, for a mean delay of 50 ms with 10 Erlangs voice traffic, the data Erlang capacity improves by about 9%.
Resumo:
We propose a novel technique for reducing the power consumed by the on-chip cache in SNUCA chip multicore platform. This is achieved by what we call a "remap table", which maps accesses to the cache banks that are as close as possible to the cores, on which the processes are scheduled. With this technique, instead of using all the available cache, we use a portion of the cache and allocate lesser cache to the application. We formulate the problem as an energy-delay (ED) minimization problem and solve it offline using a scalable genetic algorithm approach. Our experiments show up to 40% of savings in the memory sub-system power consumption and 47% savings in energy-delay product (ED).
Resumo:
This work presents micro-actuation of atomic force microscopy (AFM) cantilevers using piezoelectric Zinc Oxide (ZnO) thin film. In tapping mode AFM, the cantilever is driven near its resonant frequency by an external oscillator such as piezotube or stack of piezoelectric material. Use of integrated piezoelectric thin film for AFM cantilever eliminates the problems like inaccurate tuning and unwanted vibration modes. In this work, silicon AFM cantilevers were sputter deposited with ZnO piezoelectric film along with top and bottom metallic electrodes. The self-excitation of the ZnO coated AFM cantilever was studied using Laser Doppler Vibrometer (LDV). At its resonant frequency (227.11 kHz), the cantilever displacement varies linearly with applied excitation voltage. We observed an increase in the actuation response (131nm/V) due to improved quality of ZnO films deposited at 200 degrees C.