12 resultados para TAC, Radon, ricostruzione, tomografia
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper, we show a method of obtaining general and orthogonal moments, specifically Legendre and Zernicke moments, from the Radon Transform data of a two-dimensional function. The regular or geometric moments are first evaluated directly from the projection data and the orthogonal moments are derived from these regular moments.
Resumo:
We prove end point estimate for Radon transform of radial functions on affine Grasamannian and real hyperbolic space. We also discuss analogs of these results on the sphere.
Resumo:
In a number of applications of computerized tomography, the ultimate goal is to detect and characterize objects within a cross section. Detection of edges of different contrast regions yields the required information. The problem of detecting edges from projection data is addressed. It is shown that the class of linear edge detection operators used on images can be used for detection of edges directly from projection data. This not only reduces the computational burden but also avoids the difficulties of postprocessing a reconstructed image. This is accomplished by a convolution backprojection operation. For example, with the Marr-Hildreth edge detection operator, the filtering function that is to be used on the projection data is the Radon transform of the Laplacian of the 2-D Gaussian function which is combined with the reconstruction filter. Simulation results showing the efficacy of the proposed method and a comparison with edges detected from the reconstructed image are presented
Resumo:
In this paper we construct low decoding complexity STBCs by using the Pauli matrices as linear dispersion matrices. In this case the Hurwitz-Radon orthogonality condition is shown to be easily checked by transferring the problem to $\mathbb{F}_4$ domain. The problem of constructing low decoding complexity STBCs is shown to be equivalent to finding certain codes over $\mathbb{F}_4$. It is shown that almost all known low complexity STBCs can be obtained by this approach. New codes are given that have the least known decoding complexity in particular ranges of rate.
Resumo:
In this paper, we address the reconstruction problem from laterally truncated helical cone-beam projections. The reconstruction problem from lateral truncation, though similar to that of interior radon problem, is slightly different from it as well as the local (lambda) tomography and pseudo-local tomography in the sense that we aim to reconstruct the entire object being scanned from a region-of-interest (ROI) scan data. The method proposed in this paper is a projection data completion approach followed by the use of any standard accurate FBP type reconstruction algorithm. In particular, we explore a windowed linear prediction (WLP) approach for data completion and compare the quality of reconstruction with the linear prediction (LP) technique proposed earlier.
Resumo:
Decoding of linear space-time block codes (STBCs) with sphere-decoding (SD) is well known. A fast-version of the SD known as fast sphere decoding (FSD) has been recently studied by Biglieri, Hong and Viterbo. Viewing a linear STBC as a vector space spanned by its defining weight matrices over the real number field, we define a quadratic form (QF), called the Hurwitz-Radon QF (HRQF), on this vector space and give a QF interpretation of the FSD complexity of a linear STBC. It is shown that the FSD complexity is only a function of the weight matrices defining the code and their ordering, and not of the channel realization (even though the equivalent channel when SD is used depends on the channel realization) or the number of receive antennas. It is also shown that the FSD complexity is completely captured into a single matrix obtained from the HRQF. Moreover, for a given set of weight matrices, an algorithm to obtain a best ordering of them leading to the least FSD complexity is presented. The well known classes of low FSD complexity codes (multi-group decodable codes, fast decodable codes and fast group decodable codes) are presented in the framework of HRQF.
Resumo:
Planar triazinium cationic species from vanadyl-assisted cyclization of 1-(2-thiazolylazo)-2-naphthol (H-TAN, 1), 1-(2-pyridylazo)-2-naphthol (H-PAN, 2), 2-(2'-thiazolylazo)-p-cresol (H-TAC, 3) and 6-(2'-thiazolylazo)- resorcinol (H-TAR, 5) were prepared and characterized. A dioxovanadium(V) species VO2(TAR)] (4) was also isolated. Compounds 1, 2 and 4 were structurally characterized. Both 1 and 2 have planar structures. Complex 4 has (VO3N2)-O-V coordination geometry. The cyclised triazinium compound forms a radical species within -0.06 to -0.29 V vs. SCE in DMF-0.1 M tetrabutylammonium perchlorate with a second response due to formation of an anionic species. A confocal microscopic study showed higher nuclear uptake for 1 having a fused thiazole moiety than 2 with a fused pyridine ring. The compounds showed a partial intercalative mode of binding to calf thymus DNA. Compound 1 showed plasmid DNA photo-cleavage activity under argon and photocytotoxicity in HeLa and MCF-7 cells with IC50 values of 15.1 and 3.4 mu M respectively in visible light of 400-700 nm, while being essentially non-toxic in the dark with IC50 values of 90.4 and 21.9 mu M. ATDDFT study was done to rationalize the experimental data.
Resumo:
Using a Girsanov change of measures, we propose novel variations within a particle-filtering algorithm, as applied to the inverse problem of state and parameter estimations of nonlinear dynamical systems of engineering interest, toward weakly correcting for the linearization or integration errors that almost invariably occur whilst numerically propagating the process dynamics, typically governed by nonlinear stochastic differential equations (SDEs). Specifically, the correction for linearization, provided by the likelihood or the Radon-Nikodym derivative, is incorporated within the evolving flow in two steps. Once the likelihood, an exponential martingale, is split into a product of two factors, correction owing to the first factor is implemented via rejection sampling in the first step. The second factor, which is directly computable, is accounted for via two different schemes, one employing resampling and the other using a gain-weighted innovation term added to the drift field of the process dynamics thereby overcoming the problem of sample dispersion posed by resampling. The proposed strategies, employed as add-ons to existing particle filters, the bootstrap and auxiliary SIR filters in this work, are found to non-trivially improve the convergence and accuracy of the estimates and also yield reduced mean square errors of such estimates vis-a-vis those obtained through the parent-filtering schemes.
Resumo:
Automated security is one of the major concerns of modern times. Secure and reliable authentication systems are in great demand. A biometric trait like the finger knuckle print (FKP) of a person is unique and secure. Finger knuckle print is a novel biometric trait and is not explored much for real-time implementation. In this paper, three different algorithms have been proposed based on this trait. The first approach uses Radon transform for feature extraction. Two levels of security are provided here and are based on eigenvalues and the peak points of the Radon graph. In the second approach, Gabor wavelet transform is used for extracting the features. Again, two levels of security are provided based on magnitude values of Gabor wavelet and the peak points of Gabor wavelet graph. The third approach is intended to authenticate a person even if there is a damage in finger knuckle position due to injury. The FKP image is divided into modules and module-wise feature matching is done for authentication. Performance of these algorithms was found to be much better than very few existing works. Moreover, the algorithms are designed so as to implement in real-time system with minimal changes.
Resumo:
The Girsanov linearization method (GLM), proposed earlier in Saha, N., and Roy, D., 2007, ``The Girsanov Linearisation Method for Stochastically Driven Nonlinear Oscillators,'' J. Appl. Mech., 74, pp. 885-897, is reformulated to arrive at a nearly exact, semianalytical, weak and explicit scheme for nonlinear mechanical oscillators under additive stochastic excitations. At the heart of the reformulated linearization is a temporally localized rejection sampling strategy that, combined with a resampling scheme, enables selecting from and appropriately modifying an ensemble of locally linearized trajectories while weakly applying the Girsanov correction (the Radon-Nikodym derivative) for the linearization errors. The semianalyticity is due to an explicit linearization of the nonlinear drift terms and it plays a crucial role in keeping the Radon-Nikodym derivative ``nearly bounded'' above by the inverse of the linearization time step (which means that only a subset of linearized trajectories with low, yet finite, probability exceeds this bound). Drift linearization is conveniently accomplished via the first few (lower order) terms in the associated stochastic (Ito) Taylor expansion to exclude (multiple) stochastic integrals from the numerical treatment. Similarly, the Radon-Nikodym derivative, which is a strictly positive, exponential (super-) martingale, is converted to a canonical form and evaluated over each time step without directly computing the stochastic integrals appearing in its argument. Through their numeric implementations for a few low-dimensional nonlinear oscillators, the proposed variants of the scheme, presently referred to as the Girsanov corrected linearization method (GCLM), are shown to exhibit remarkably higher numerical accuracy over a much larger range of the time step size than is possible with the local drift-linearization schemes on their own.
Resumo:
Decoding of linear space-time block codes (STBCs) with sphere-decoding (SD) is well known. A fast-version of the SD known as fast sphere decoding (FSD) was introduced by Biglieri, Hong and Viterbo. Viewing a linear STBC as a vector space spanned by its defining weight matrices over the real number field, we define a quadratic form (QF), called the Hurwitz-Radon QF (HRQF), on this vector space and give a QF interpretation of the FSD complexity of a linear STBC. It is shown that the FSD complexity is only a function of the weight matrices defining the code and their ordering, and not of the channel realization (even though the equivalent channel when SD is used depends on the channel realization) or the number of receive antennas. It is also shown that the FSD complexity is completely captured into a single matrix obtained from the HRQF. Moreover, for a given set of weight matrices, an algorithm to obtain an optimal ordering of them leading to the least FSD complexity is presented. The well known classes of low FSD complexity codes (multi-group decodable codes, fast decodable codes and fast group decodable codes) are presented in the framework of HRQF.
Resumo:
We propose a Monte Carlo filter for recursive estimation of diffusive processes that modulate the instantaneous rates of Poisson measurements. A key aspect is the additive update, through a gain-like correction term, empirically approximated from the innovation integral in the time-discretized Kushner-Stratonovich equation. The additive filter-update scheme eliminates the problem of particle collapse encountered in many conventional particle filters. Through a few numerical demonstrations, the versatility of the proposed filter is brought forth.