14 resultados para T3

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

\alpha T3-1 cells showed a slope resistance of 1.8 G\omega. The cell membrane surface was not smooth and a scanning electron micrograph showed a complex structure with blebs and microvilli like projections. The cells showed spontaneous fluctuations at zero current resting membrane potential and hyperpolarization increased the amplitude of membrane potential fluctuations. The amplitude of membrane potential fluctuations at hyperpolarized membrane potential was attenuated on application of TTX to the bath solution. The potential at which half steady state inactivation of isolated sodium current occurred, was at a very hyperpolarized potential (-95.4 mV). The study presented in this paper shows that the voltage gated sodium channels contribute to the increase in the amplitude of electrical noise with hyperpolarization in \alpha T3-1 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ca2+-activated K+ channel in endocrine cells is responsible for membrane hyperpolarization and rhythmic firing of action potentials. The probability of opening of this channel is sensitive to intracellular-free Ca2+ concentration. In this study we have identified one such large conductance Ca2+-activated K+ channel in alpha T3-1 pituitary gonadotroph cell. This channel is ohmic with a unit conductance of 170 pS in symmetrical KCl (135 mM) and its current reverses near zero millivolts. When more than one channel is present in the patch membrane they open and close independent of each other, exhibiting no cooperativity between them as expected of a binomial distribution. The regulatory mechanism of this channel in modulating hormone secretion from alpha T3-1 gonadotroph cells is indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Friction stir processing (FSP) is emerging as one of the most competent severe plastic deformation (SPD) method for producing bulk ultra-fine grained materials with improved properties. Optimizing the process parameters for a defect free process is one of the challenging aspects of FSP to mark its commercial use. For the commercial aluminium alloy 2024-T3 plate of 6 mm thickness, a bottom-up approach has been attempted to optimize major independent parameters of the process such as plunge depth, tool rotation speed and traverse speed. Tensile properties of the optimum friction stir processed sample were correlated with the microstructural characterization done using Scanning Electron Microscope (SEM) and Electron Back-Scattered Diffraction (EBSD). Optimum parameters from the bottom-up approach have led to a defect free FSP having a maximum strength of 93% the base material strength. Micro tensile testing of the samples taken from the center of processed zone has shown an increased strength of 1.3 times the base material. Measured maximum longitudinal residual stress on the processed surface was only 30 MPa which was attributed to the solid state nature of FSP. Microstructural observation reveals significant grain refinement with less variation in the grain size across the thickness and a large amount of grain boundary precipitation compared to the base metal. The proposed experimental bottom-up approach can be applied as an effective method for optimizing parameters during FSP of aluminium alloys, which is otherwise difficult through analytical methods due to the complex interactions between work-piece, tool and process parameters. Precipitation mechanisms during FSP were responsible for the fine grained microstructure in the nugget zone that provided better mechanical properties than the base metal. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For a dynamically disordered continuum it is found that the exact quantum mechanical mean square displacement 〈x2(t)〉∼t3, for t→∞. A Gaussian white-noise spectrum is assumed for the random potential. The result differs qualitatively from the diffusive behavior well known for the one-band lattice Hamiltonian, and is understandable in terms of the momentum cutoff inherent in the lattice, simulating a "momentum bath."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyhedral bodies of Bombyx mori nuclear polyhedrosis virus, BmNPV (BGL) isolated from infected silkworms around Bangalore were propagated either in the cultured B. mori cell line, BmN or through infection of larvae. Electron microscopic (EM) observations of the polyhedra revealed an average length of 2 mu m and a height of 0.5 mu m. The purified polyhedra derived virions (PDV) showed several bands in sucrose gradient centrifugation, indicating the multiple nucleocapsid nature of BmNPV. Electron microscopic studies of PDV revealed a cylindrical, rod-shaped nucleocapsid with an average length of 300 nm and a diameter of 35 nm. The genomic DNA from the PDV was characterized by extensive restriction analysis and the genome size was estimated to be 132 kb. The restriction pattern of BmNPV (BGL) resembled that of the prototype strain BmNPV-T3. Distinct differences due to polymorphic sites for restriction enzyme HindIII were apparent between BmNPV (BGL) and the virus isolated from a different part of Karnataka (Dharwad area), BmNPV (DHR).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Cancer stem cells exhibit close resemblance to normal stem cells in phenotype as well as function. Hence, studying normal stem cell behavior is important in understanding cancer pathogenesis. It has recently been shown that human breast stem cells can be enriched in suspension cultures as mammospheres. However, little is known about the behavior of these cells in long-term cultures. Since extensive self-renewal potential is the hallmark of stem cells, we undertook a detailed phenotypic and functional characterization of human mammospheres over long-term passages. Methodology: Single cell suspensions derived from human breast `organoids' were seeded in ultra low attachment plates in serum free media. Resulting primary mammospheres after a week (termed T1 mammospheres) were subjected to passaging every 7th day leading to the generation of T2, T3, and T4 mammospheres. Principal Findings: We show that primary mammospheres contain a distinct side-population (SP) that displays a CD24(low)/CD44(low) phenotype, but fails to generate mammospheres. Instead, the mammosphere-initiating potential rests within the CD44(high)/CD24(low) cells, in keeping with the phenotype of breast cancer-initiating cells. In serial sphere formation assays we find that even though primary (T1) mammospheres show telomerase activity and fourth passage T4 spheres contain label-retaining cells, they fail to initiate new mammospheres beyond T5. With increasing passages, mammospheres showed an increase in smaller sized spheres, reduction in proliferation potential and sphere forming efficiency, and increased differentiation towards the myoepithelial lineage. Significantly, staining for senescence-associated beta-galactosidase activity revealed a dramatic increase in the number of senescent cells with passage, which might in part explain the inability to continuously generate mammospheres in culture. Conclusions: Thus, the self-renewal potential of human breast stem cells is exhausted within five in vitro passages of mammospheres, suggesting the need for further improvisation in culture conditions for their long-term maintenance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of designing high rate, full diversity noncoherent space-time block codes (STBCs) with low encoding and decoding complexity is addressed. First, the notion of g-group encodable and g-group decodable linear STBCs is introduced. Then for a known class of rate-1 linear designs, an explicit construction of fully-diverse signal sets that lead to four-group encodable and four-group decodable differential scaled unitary STBCs for any power of two number of antennas is provided. Previous works on differential STBCs either sacrifice decoding complexity for higher rate or sacrifice rate for lower decoding complexity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial FtsE gene codes for the ATP-binding protein, FtsE, which in complex with the transmembrane protein, FtsX, participates in diverse cellular processes. Therefore, regulated expression of FtsE and FtsX might be critical to the human pathogen, Mycobacterium tuberculosis, under stress conditions. Although ftsX gene of M. tuberculosis (MtftsX) is known to be transcribed from a promoter inside the upstream gene, ftsE, the transcriptional status of ftsE gene of M. tuberculosis (MtftsE) remains unknown. Therefore, the authors initiated transcriptional analyses of MtftsE, using total RNA from M. tuberculosis cells that were grown under stress conditions, which the pathogen is exposed to, in granuloma in tuberculosis patients. Primer extension experiments showed the presence of putative transcripts, T1, T2, T3, and T4. T1 originated from the intergenic region between the upstream gene, MRA_3135, and MtftsE. T2 and T3 were found initiated from within MRA_3135. T4 was transcribed from a region upstream of MRA_3135. RT-PCR confirmed co-transcription of MRA_3135 and MtftsE. The cloned putative promoter regions for T1, T2, and T3 elicited transcriptional activity in Mycobacterium smegmatis transformants. T1, T2, and T3, but no new transcript, were present in the M. tuberculosis cells that were grown under the stress conditions, which the pathogen is exposed to in granuloma in tuberculosis patients. It showed lack of modulation of MtftsE transcripts under the stress conditions tested, indicating that ftsE may not have a stress response-specific function in M. tuberculosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iodothyronine deiodinases (IDs) are mammalian selenoenzymes that catalyze the conversion of thyroxine (T4) to 3,5,3'-triiodothyronine (T3) and 3,3',5'-triiodothyronine (rT3) by the outer- and inner-ring deiodination pathways, respectively. These enzymes also catalyze further deiodination of T3 and rT3 to produce a variety of di- and monoiodo derivatives. In this paper, the deiodinase activity of a series of pen-substituted naphthalenes having different amino groups is described. These compounds remove iodine selectively from the inner-ring of T4 and T3 to produce rT3 and 3,3'-diiodothyronine (3,3'-T2), respectively. The naphthyl-based compounds having two selenols in the pen-positions exhibit much higher deiodinase activity than those having two thiols or a thiol selenol pair. Mechanistic investigations reveal that the formation of a halogen bond between the iodine and chalcogen (S or Se) and the pen-interaction between two chalcogen atoms (chalcogen bond) are important for the deiodination reactions. Although the formation of a halogen bond leads to elongation of the C-I bond, the chalcogen bond facilitates the transfer of more electron density to the C-I sigma* orbitals, leading to a complete cleavage of the C-I bond. The higher activity of amino-substituted selenium compounds can be ascribed to the deprotonation of thiol/selenol moiety by the amino group, which not only increases the strength of halogen bond but also facilitates the chalcogen chalcogen interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a singular edge-based smoothed finite element method (sES-FEM) for mechanics problems with singular stress fields of arbitrary order. The sES-FEM uses a basic mesh of three-noded linear triangular (T3) elements and a special layer of five-noded singular triangular elements (sT5) connected to the singular-point of the stress field. The sT5 element has an additional node on each of the two edges connected to the singular-point. It allows us to represent simple and efficient enrichment with desired terms for the displacement field near the singular-point with the satisfaction of partition-of-unity property. The stiffness matrix of the discretized system is then obtained using the assumed displacement values (not the derivatives) over smoothing domains associated with the edges of elements. An adaptive procedure for the sES-FEM is proposed to enhance the quality of the solution with minimized number of nodes. Several numerical examples are provided to validate the reliability of the present sES-FEM method. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thyroid hormones are essential for the development and differentiation of all cells of the human body. They regulate protein, fat, and carbohydrate metabolism. In this Account, we discuss the synthesis, structure, and mechanism of action of thyroid hormones and their analogues. The prohormone thyroxine (14) is synthesized on thyroglobulin by thyroid peroxidase (TPO), a heme enzyme that uses iodide and hydrogen peroxide to perform iodination and phenolic coupling reactions. The monodeiodination of T4 to 3,3',5-triiodothyronine (13) by selenium-containing deiodinases (ID-1, ID-2) is a key step in the activation of thyroid hormones. The type 3 deiodinase (ID-3) catalyzes the deactivation of thyroid hormone in a process that removes iodine selectively from the tyrosyl ring of T4 to produce 3,3',5'-triiodothyronine (rT3). Several physiological and pathological stimuli influence thyroid hormone synthesis. The overproduction of thyroid hormones leads to hyperthyroidism, which is treated by antithyroid drugs that either inhibit the thyroid hormone biosynthesis and/or decrease the conversion of T4 to T3. Antithyroid drugs are thiourea-based compounds, which indude propylthiouracil (PTU), methimazole (MM I), and carbimazole (CBZ). The thyroid gland actively concentrates these heterocyclic compounds against a concentration gradient Recently, the selenium analogues of PTU, MMI, and CBZ attracted significant attention because the selenium moiety in these compounds has a higher nucleophilicity than that of the sulfur moiety. Researchers have developed new methods for the synthesis of the selenium compounds. Several experimental and theoretical investigations revealed that the selone (C=Se) in the selenium analogues is more polarized than the thione (C=S) in the sulfur compounds, and the selones exist predominantly in their zwitterionic forms. Although the thionamide-based antithyroid drugs have been used for almost 70 years, the mechanism of their action is not completely understood. Most investigations have revealed that MMI and PTU irreversibly inhibit TPO. PTU, MTU, and their selenium analogues also inhibit ID-1, most likely by reacting with the selenenyl iodide intermediate. The good ID-1 inhibitory activity of Pill and its analogues can be ascribed to the presence of the -N(H)-C(=O)- functionality that can form hydrogen bonds with nearby amino add residues in the selenenyl sulfide state. In addition to the TPO and ID-1 inhibition, the selenium analogues are very good antioxidants. In the presence of cellular reducing agents such as GSH, these compounds catalytically reduce hydrogen peroxide. They can also efficiently scavenge peroxynitrite, a potent biological oxidant and nitrating agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iodothyronine deiodinases (IDs) are mammalian selenoenzymes that play an important role in the activation and inactivation pound of thyroid hormones. It is known that iodothyronamines (TnAMs), produced by the decarboxylation of thyroid hormones, act as substrates for deiodinases. To understand whether decarboxylation alters the rate and/or regioselectivity of deiodination by using synthetic deiodinase mimics, we studied the deiodination of different iodothyronamines. The triiodo derivative 3,3',5-triiodothyronamine (T3AM) is deiodinated at the inner ring by naphthyl-based deiodinase mimics, which is similar to the deiodination of 3,3',5-triiodothyronine (T3). However, T3AM under-goes much slower deiodination than T3. Detailed experimental and theoretical investigations suggest that T3AM forms a weaker halogen bond with selenium donors than T3. Kinetic studies and single-crystal X-ray structures of T3 and T3AM reveal that intermolecular I center dot center dot center dot I interactions may play an important role in deiodination. The formation of hydrogen- and halogen-bonding assemblies, which leads to the formation of a dimeric species of T3 in solution, facilitates the interactions between the selenium and iodine atoms. In contrast, T3AM, which does not have I center dot center dot I interactions, undergoes much slower deiodination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sound weld was obtained between 2024-T3 Al alloy and AZ31B-O Mg alloy dissimilar metal plates of 5 mm thickness, at a rotational speed of 300 rev min(-1) and at a welding speed of 50 mm min(-1). One of the parameter studied was, the effect of interface offset variation, on the quality and properties of the welded samples and on the thickness of intermetallic layer formed in the welded samples. The intermetallic layer at the midst of the weld volume contains intermetallic compounds Al12Mg17 and Al3Mg2. Highest tensile strength of 106.86 MPa, corresponding tensile joint efficiency of 44.52% and corresponding elongation 1.33% were obtained for the tensile sample, with interface offset of 0.66 mm from zero interface offset in retreating side and with approximate least intermetallic thickness of 1.2 mu m. Dissimilar friction stir welded joint samples had failed completely in brittle fracture mode; the position of tensile fracture was located at the midst of intermetallic layer, which had maximum hardness and minimum ductility. The nano hardness values fluctuate in the weld nugget owing to dynamic recrystallization of alloy materials and formation of brittle intermetallic compounds of alloy materials in the weld nugget; maximum hardness of 10.74 GPa occurred for the sample with least intermetallic thickness of 1.2 mu m. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The type1 iodothyronine deiodinase (1D-1) in liver and kidney converts the L-thyroxine (T4), a prohormone, by outer-ring (5) deiodination to biologically active 3,3,5-triiodothyronine (T3) or by inner-ring (5) deiodination to inactive 3,3,5-triiodothronine (rT3). Sulfate conjugation is an important step in the irreversible inactivation of thyroid hormones. While sulfate conjugation of the phenolic hydroxyl group stimulates the 5-deiodination of T4 and T3, it blocks the 5-deiodination of T4. We show that thyroxine sulfate (T4S) undergoes faster deiodination as compared to the parent thyroid hormone T4 by synthetic selenium compounds. It is also shown that ID-3 mimics, which are remarkably selective to the inner-ring deiodination of T4 and T3, changes the selectivity completely when T4S is used as a substrate. From the theoretical investigations, it is observed that the strength of halogen bonding increases upon sulfate conjugation, which leads to a change in the regioselectivity of ID-3 mimics towards the deiodination of T4S. It has been shown that these mimics perform both the 5- and 5-ring deiodinations by an identical mechanism.