641 resultados para Synthesis of Nitrones
em Indian Institute of Science - Bangalore - Índia
Resumo:
Cyclohexanone and 2-, 3- and 4-methylcyclohexanones have been condensed with acetylene to give the respective 1-ethinylcyclohexanola. The 1-ethinylcyclohexanols were hydrogenated to the respective 1-vinyl- and 1-ethylcyclohexanols. The 1-vinylcyclohexanols have been treated with phosphorus tribromide to give the corresponding rearranged β-cyclohexylidenethyl bromides which have been converted to the pyridinium salts. The latter were treated with p-nitrosodimethylaniline and alkali (Krohnke's method) to give the corresponding nitrones which were hydrolyzed to the corresponding aldehydes. The 1-ethinyl-, 1-vinyl- and 1-ethylcyclohexanols prepared were subjected to pharmacological tests.
Resumo:
The first total synthesis of (-)-4-thiocyanatoneopupukeanane starting from (R)-carvone has been achieved, establishing the relative as well as absolute structure of the natural product.
Resumo:
Oxidation of mu-H/alkylbisnaphthols (4a-g) gives the 14-substituted dibenzo[aj]xanthenes (5a-g) as the sole product while that of mu-arylbisnaphthols (4h-j) gives the xanthenes (5h-j) along with the corresponding spironaphthalenones (1h-j). A probable mechanism for the formation of the products has been suggested.
Resumo:
Reaction of 6-acetoxy-5-bromomethylquinoline (1c) and 2-bromomethyl-4-(2'-pyridyl)phenyl acetate (2b) with tetrachlorocatechol in acetone in the presence of anhydrous potassium carbonate resulted in the formation of diastereomeric products 3c, 3d, 4e and 4f.
Resumo:
A variety of functionalized selenocyanates generated in situ from the corresponding alkyl halides undergo a facile reductive coupling on treatment with benzyltriethylammonium tetrathiomolybdate 1 under very mild conditions to give the corresponding diselenides in very good yields.
Resumo:
High microwave susceptibility of NaH2PO4 . 2H(2)O has been discovered, This hydrated acid phosphate of sodium can be heated upto 1000 K or more when exposed to 2.45 GHz microwaves. Using this, a novel microwave-assisted preparation of a number of important crystalline and glassy materials with NASICON-type chemistry has been accomplished in less than 8 min which is only a fraction of the time required for conventional synthetic procedures, The present single-shot approach to the preparation of phosphates is attractive in terms of its simplicity, rapidity, and general applicability, A ''step-ladder'' heating mechanism has been proposed to account for the high microwave absorbing ability of NaH2PO4 . 2H(2)O.
Resumo:
The first stereoselective total synthesis of (+/-)-allo-cedrol 20, an enantiomer of khusiol and a complex sesquiterpene having a novel tricyclo[5.2.2.0(1,5)]undecane framework, is reported from 8-methoxytricyclo[6.2.2.0(1,6)]dodec-6-en-9-one 6c. The methodology involves preparation of 9-methoxytricyclo[7.2.1.0(1,6)]dodec-6-en-8-one 12 from 6c and its conversion through the compounds 8-benzyloxy-7,7-dimethyl-9-methoxytricyclo[7.2.1.0(1,6)]dodec-5-ene 38, 7-benzyloxy-8-methoxy-2,6,6-trimethyltricyclo[6.2.1.0(1,5)]undecane 48 into 8-methoxy-2,6,6-trimethyltricyclo[6.2.1.0(1,5)]undecan-7-one 49. Wittig reaction of 49 affords the olefin 50 which has been smoothly rearranged into khusione 51. Metal-ammonia reduction of khusione under specific conditions affords (+/-)-allo-cedrol. Thus, bridgehead substitution of a methoxy group by a methyl group is the key reaction in this synthesis. In an alternative strategy, attempted conversion of 8-methoxy-2-methyltricyclo[6.2.1.0(1,5)]undec-5-en-7-one 16 into khusione 37 results in an inseparable mixture of the isomers. A notable observation in this synthesis is the unusual formation of a gamma-alkylated product 27 during Woodward methylation of 16.
Resumo:
A general method for the preparation of novel disulfide-tethered macrocyclic diacylglycerols (DAGs) has been described. Overall synthesis involved stepwise protection, acylation, and deprotection to yield the bis(omega-bromoacyl) glycerols. In the crucial macrocyclization step, a unique reagent, benzyltriethylammonium tetrathiomolybdate (BTAT), has been used to convert individual bis(omega-bromoacyl) glycerols to their respective macrocyclic disulfides. DAG 6, which had ether linkages between hydrocarbon chains and the glycerol backbone, was also synthesized from an appropriate precursor using a similar protocol. One of the DAGs (DAG 5) had a carbon-carbon tether instead of a disulfide one and was synthesized using modified Glaser coupling. Preparation of alpha-disulfide-tethered DAG (DAG 4) required an alternative method, as treatment of the bisbromo precursor with BTAT gave a mixture of several compounds from which separation of the target molecule was cumbersome. To avoid this problem, the bisbromide was converted to its corresponding dithiocyanate, which on further treatment with BTAT yielded the desired DAG (DAG 4) in good yield. Upon treatment with the reducing agent dithiothreitol (DTT), the DAGs that contain a disulfide tether could be quantitatively converted to their "open-chain" thiol analogues. These macrocyclic DAGs and their reduced "open-chain" analogues have been incorporated in DPPC vesicles to study their effect on model membranes. Upon incorporation of DAG 1 in DPPC vesicles, formation of new isotropic phases was observed by P-31 NMR, These isotropic phases disappeared completely on opening the macrocyclic ring by a reducing agent. The thermotropic properties of DPPC bilayers having DAGs (1-6) incorporated at various concentrations were studied by differential scanning calorimetry. Incorporation of DAGs in general reduced the cooperativity unit (CU) of the vesicles. Similar experiments with reduced "open-chain" DAGs incorporated in a DPPC bilayer indicated a recovery of CU with respect to their macrocyclic "disulfide" counterparts. The effect of inclusion of these DAGs on the activity of phospholipase A(2) (PLA(2)) was studied in vitro. Incorporation of DAC 1 in DPPC membranes potentiated both bee venom and cobra venom PLA(2) activities.
Resumo:
Poly[(2,5-dimethoxy-p-phenylene)vinylene] (DMPPV) of varying conjugation length was synthesized by selective elimination of organic soluble precursor polymers that contained two eliminatable groups, namely, methoxy and acetate groups. These precursor copolymers were in turn synthesized by competitive nucleophilic substitution of the sulfonium polyelectrolyte precursor (generated by the standard Wessling route) using methanol and sodium acetate in acetic acid. The composition of the precursor copolymer, in terms of the relative amounts of methoxy and acetate groups, was controlled by varying the composition of the reaction mixture during nucleophilic substitution. Thermal elimination of these precursor copolymers at 250 degrees C, yielded partially conjugated polymers, whose color varied from light yellow to deep red. FT-IR studies confirmed that, while essentially all the acetate groups were eliminated, the methoxy groups were intact and caused the interruption in conjugation. Preliminary photoluminescence studies of the partially eliminated DMPPV samples showed a gradual shift in the emission maximum from 498 to 598 nm with increasing conjugation lengths, suggesting that the color of LED devices fabricated from such polymers can, in principle, be fine-tuned.
Resumo:
Three new (dialkylamino)pyridine (DAAP)-based ligand amphiphiles 3-5 have been synthesized. All of the compounds possess a metal ion binding subunit in the form of a 2,6-disubstituted DAAP moiety. In addition, at least one ortho-CH2OH substituent is present in all the ligands. Complex formation by these ligands with various metal ions were examined under micellar conditions, but only complexes with Cu(II) ions showed kinetically potent esterolytic capacities under micellar conditions. Complexes with Cu(II) were prepared in host comicellar cetyltrimethylammonium bromide (CTABr) media at pH 7.6. Individual complexes were characterized by UV-visible absorption spectroscopy and electron paramagnetic resonance spectroscopy. These metallomicelles speed the cleavage of the substrates p-nitrophenyl hexanoate or p-nitrophenyl diphenyl phosphate. To ascertain the nature of the active esterolytic species, the stoichiometries of the respective Cu(II) complexes were determined from the kinetic version of Job's plot. In all the instances, 2:1 complex ligand/Cu(II) ion are the most kinetically competent species. The apparent pK(a) values of the Cu(II)-coordinated hydroxyl groups of the ligands 3, 4, and 5, in the comicellar aggregate, are 7.8, 8.0, and 8.0, respectively, as estimated from the rate constant vs pH: profiles of the ester cleavage reactions. The nucleophilic metallomicellar reagents and the second-order "catalytic" rate constants toward esterolysis of the substrate p-nitrophenyl hexanoate (at 25 degrees C, pH 7.6) are 37.5 for 3, 11.4 for 4, and 13.8 for 5. All catalytic systems comprising the coaggregates of 3, 4, or 5 and CTABr demonstrate turnover behavior in the presence of excess substrate.
Resumo:
Zinc microtower and platestacks were synthesized by thermal evaporation of zinc. This synthesis was carried out under high vacuum conditions in the absence of catalyst and carrier gas. The morphology, composition and microstructural properties of the Zn nanostructures were studied by XRD, SEM and TEM. The synthesized microtowers and platestacks were single crystalline in nature. These microtowers and platestacks showed a layered structures consisting of several hexagonal nanoplates. Based on the morphological and composition analysis, we have proposed a vapor-solid mechanism to explain the growth of these nanostructures.
Resumo:
Diels-Alder reaction of the dienone 12, obtained by C-alkylation of sodium 2,6-dimethylphenoxide, with acrylonitrile and phenyl vinyl sulfones generate the enynes 14 and 17. Tributyltin radical addition to the terminal acetylene in 14 and 17 lead to the vinylstannanes 15 and 18 via 5-exo trig cyclisation of the resulting vinyl radical, which on oxidative cleavage furnishes the isotwistane-diones 16 and 19. Reductive desulfonylation of the diketosulfone 19 furnishes the dione 11, constituting a formal total synthesis of 2-pupukeanone 5 and 2-isocyanopupukeanone 3.
Resumo:
We report the growth of one-dimensional ZnO nanostructures with different morphologies such as nanoneedles, nanorods, nanobelts from Zn powder/granule. The growth process is different from the conventional vapor-solid mechanism. The advantage of this method is that neither a catalyst nor any gas flow is required for the synthesis of nanostructures. Depending upon the Zn powder or Zn granules as the starting material different nanostructures have been synthesized which demonstrates the versatility of the technique.
Resumo:
The application of radical-mediated cyclizations and annulations in organic synthesis has grown in importance steadily over the years to reach the present status where they are now routinely used in the strategy-level planning.2 The presence of a quaternary carbon atom is frequently encountered in terpenoid natural products, and it often creates a synthetic challenge when two or more quaternary carbon atoms are present in a contiguous manner.3 Even though creation of a quaternary carbon atom by employing a tertiary radical is very facile, creation of a quaternary carbon atom (or a spiro carbon atom) via radical addition onto a fully substituted olefinic carbon atom is not that common but of synthetic importance. For example, the primary radical derived from the bromide 1 failed to cyclize to generate the two vicinal quaternary carbon atoms and resulted in only the reduced product 2.4 The tricyclic carbon framework tricyclo[6.2.1.01,5]undecane (3) is present in a number of sesquiterpenoids e.g. zizzanes, prelacinanes, etc.5
Resumo:
There have been major advances in the past couple of years in the rational synthesis of inorganic solids: synthesis of mercury-based superconducting cuprates showing transition temperatures up to 150 K; ZrP2-xVxO7 solid solutions showing zero or negative thermal expansion; copper oxides possessing ladder structures such as La1-xSrxCuO2.5; synthesis of mesoporous oxide materials having adjustable pore size in the range 15-100 Angstrom; and synthesis of a molecular ferromagnet showing a critical temperature of 18.6 K. Despite great advances in probing the structures of solids and measurement of their physical properties, the design and synthesis of inorganic solids possessing desired structures and properties remain a challenge today. With the availability of a variety of mild chemistry-based approaches, kinetic control of synthetic pathways is becoming increasingly possible, which, it is hoped, will eventually make rational design of inorganic solids a reality.