18 resultados para Syndrome Baculovirus Wsbv
em Indian Institute of Science - Bangalore - Índia
Resumo:
Peanut (Arachis hypogaea) seed lectin, PNA is widely used to identify tumor specific antigen (T-antigen), Gal beta 1-3GalNAc on the eukaryotic cell surface. The functional amino acid coding region of a cDNA clone, pBSH-PN was PCR amplified and cloned downstream of the polyhedrin promoter in the Autographa californica nucleopolyhedrovirus (AcNPV) based transfer vector pVL1393. Co-transfection of Spodoptera frugiperda cells (Sf9) with the transfer vector, pAcPNA and AcRP6 (a recombinant AcNPV having B-gal downstream of the polyhedrin promoter) DNAs produced a recombinant virus, AcPNA which expresses PNA. Infection of suspension culture of Sf9 cells with plaque purified AcPNA produced as much as 9.8 mg PNA per liter (2.0 x 10(6) cells/ml) of serum-free medium. Intracellularly expressed protein (re-PNA) was purified to apparent homogeneity by affinity chromatography using ECD-Sepharose. Polyclonal antibodies against natural PNA (n-PNA) crossreacted with re-PNA. The subunit molecular weight (30 kDa), hemagglutination activity, and carbohydrate specificity of re-PNA were found to be identical to that of n-PNA, thus confirming the abundant production of a functionally active protein in the baculovirus expression system.
Resumo:
Among the human diseases that result from chromosomal aberrations, a de novo deletion in chromosome 11p13 is clinically associated with a syndrome characterized by Wilms' tumor, aniridia, genitourinary anomalies, and mental retardation (WAGR). Not all genes in the deleted region have been characterized biochemically or functionally. We have recently identified the first Class III cyclic nucleotide phosphodiesterase, Rv0805, from Mycobacterium tuberculosis, which biochemically and structurally belongs to the superfamily of metallophosphoesterases. We performed a large scale bioinformatic analysis to identify orthologs of the Rv0805 protein and identified many eukaryotic genes that included the human 239FB gene present in the region deleted in the WAGR syndrome. We report here the first detailed biochemical characterization of the rat 239FB protein and show that it possesses metallophosphodiesterase activity. Extensive mutational analysis identified residues that are involved in metal interaction at the binuclear metal center. Generation of a rat 239FB protein with a mutation corresponding to a single nucleotide polymorphism seen in human 239FB led to complete inactivation of the protein. A close ortholog of 239FB is found in adult tissues, and biochemical characterization of the 239AB protein demonstrated significant hydrolytic activity against 2',3'-cAMP, thus representing the first evidence for a Class III cyclic nucleotide phosphodiesterase in mammals. Highly conserved orthologs of the 239FB protein are found in Caenorhabditis elegans and Drosophila and, coupled with available evidence suggesting that 239FB is a tumor suppressor, indicate the important role this protein must play in diverse cellular events.
Resumo:
The hemagglutinin (H) protein of Rinderpest virus expressed by a recombinant buculovirus used as a vaccine produced high titres of neutralizing antibody to Rinderpest virus in the vaccinated cattle, comparable to the levels produced by live attenuated vaccine. The immunized cattle were protected against a vaccine-virus challenge, as demonstrated by the failure of development of antibodies to N protein of the vaccine virus. The lack of replication of vaccine virus in the immunized cattle indicated that they are capable of showing a protective response if challenged with a virulent virus.
Resumo:
Mental retardation due to fragile X syndrome is one of the genetic disorders caused by tripler repeat expansion, CGG repeat involved in this disease is known to exhibit polymorphism even among normal individuals. Here we describe the development of suitable probes for detection of polymorphism in CGG repeat at FMR1 locus as well as the diagnosis of fragile X syndrome. Using these methods polymorphism at the FMR1 locus has been examined in 161 individuals. Ninety eight patients with unclassified mental retardation were examined, of whom 7 were found to have the expanded (CGG) allele at the FMR1 locus, The hybridization pattern for two patients has been presented as representative data.
Resumo:
BacilliformOryctes baculovirus particles have been visualized in electron micrographs of midgut sections from virus infectedOryctes rhinoceros beetles. Morphologically the Indian isolate (Oryctes baculovirus, KI) resembled the previously reportedOryctes baculovirus, isolate PV505. The constituent proteins of baculovirus KI have been analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and by Western blots using polyclonal antibodies raised against the complete viral particles, as probes. A total of forty eight viral proteins have been identified. Fourteen viral proteins were located on the viral envelope. Among the proteins constituting the nucleocapsid, three were located internally within the capsid. A 23.5 kDa protein was tightly associated with viral DNA in the nucleocapsid core. Two envelope and seven capsid proteins stained positive for glycosylation. Comparison between the viral proteins of KI and PV505 revealed differences in SDS-PAGE profiles and glycosylation patterns. Immunoblotting of KI and PV505 proteins with anti KI antiserum demonstrated antigenic differences between the two viral isolates.
Resumo:
An assay was developed for quantitation of the antigenic relationship between viruses, by modification of the indirect ELISA. The principle of this method is to estimate the epitopes not shared between the related viruses, after titration of the antibodies specific to the common epitopes as in a blocking ELISA. In practice, varying concentrations of purified virus are preincubated with a fixed dilution of heterologous or homologous antiserum and the unbound antibodies present in the mixture are back titrated with virus particles bound to microtitre plates. The antigenic relationship is described in terms of differentiation index (DI) and total antigenic reactivity (TAR). This method has been used to quantitate cross-reactivity between two geographically different isolates of Oryctes baculovirus.
Resumo:
A non-occluded baculovirus, OBV-KI has been isolated from the insect pest, Oryctes rhinoceros. The viral genome is estimated to be 123 kb, with a G + C content of 43 mol% and no detectible methylated bases. A restriction map of the OBV-KI genome for BamHI, EcoRI, HindIII, PstI, SalI and XbaI has been constructed.
Resumo:
Oryctes baculovirus is a viral biocide exploited for the control of the insect pest Oryctes rhinoceros. We have recently established a physical map of the genome of the Indian isolate of Oryctes baculovirus (OBV-KI). Here we examine the genomic relatedness between OBV-KI and OBV-PV505, the type isolate (originally from the Philippines), by DNA reassociation kinetics and by the use of restriction endonucleases. On the basis of differences in restriction-enzyme profiles between the two genomes, and previously reported differences in protein profiles and antigenic makeup, we propose the taxonomic status of a variant of Oryctes baculovirus for the Indian isolate.
Resumo:
Bombyx mori nuclear polyhedrosis virus (BmNPV)-based baculovirus expression system exploits silkworm larvae as an economical alternative to large-scale cell cultures for production of biomolecules. To generate recombinant BmNPV at high efficiency, we have achieved high efficiency transfection of B. mori cells, BmN, through lipofection. Optimal conditions for lipofection were standardized by quantification of the transient expression level of firefly luciferase (luc) reporter gene under control of an immediate early gene promoter of BmNPV Lipofection was 50-fold and 100-fold more efficient than the calcium phosphate method for transfecting BmN and Sf9 cells, respectively. Lipofection enabled us to generate a recombinant BmNPV (vBmluc), harboring luc under control of the strong polyhedrin promoter On infection with vBmluc, luciferase was expressed at very high levels, 170 mu g/10(6) BmN cells or 13 mg/larva. Expression of luciferase in vBmluc-infected larvae was visualized by luminescence emission instantaneously following luciferin injection generating ''glowing silkworms''.
Resumo:
Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH) proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly) protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.
Resumo:
Metallophosphoesterase-domain-containing protein 2 (MPPED2) is a highly evolutionarily conserved protein with orthologs found from worms to humans. The human MPPED2 gene is found in a region of chromosome 11 that is deleted in patients with WAGR (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) syndrome, and MPPED2 may function as a tumor suppressor. However, the precise cellular roles of MPPED2 are unknown, and its low phosphodiesterase activity suggests that substrate hydrolysis may not be its prime function. We present here the structures of MPPED2 and two mutants, which show that the poor activity of MPPED2 is not only a consequence of the substitution of an active-site histidine residue by glycine but also due to binding of AMP or GMP to the active site. This feature, enhanced by structural elements of the protein, allows MPPED2 to utilize the conserved phosphoprotein-phosphatase-like fold in a unique manner, ensuring that its enzymatic activity can be combined with a possible role as a scaffolding or adaptor protein. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND Familial diarrhea disorders are, in most cases, severe and caused by recessive mutations. We describe the cause of a novel dominant disease in 32 members of a Norwegian family. The affected members have chronic diarrhea that is of early onset, is relatively mild, and is associated with increased susceptibility to inflammatory bowel disease, small-bowel obstruction, and esophagitis. METHODS We used linkage analysis, based on arrays with single-nucleotide polymorphisms, to identify a candidate region on chromosome 12 and then sequenced GUCY2C, encoding guanylate cyclase C (GC-C), an intestinal receptor for bacterial heat-stable enterotoxins. We performed exome sequencing of the entire candidate region from three affected family members, to exclude the possibility that mutations in genes other than GUCY2C could cause or contribute to susceptibility to the disease. We carried out functional studies of mutant GC-C using HEK293T cells. RESULTS We identified a heterozygous missense mutation (c.2519G -> T) in GUCY2C in all affected family members and observed no other rare variants in the exons of genes in the candidate region. Exposure of the mutant receptor to its ligands resulted in markedly increased production of cyclic guanosine monophosphate (cGMP). This may cause hyperactivation of the cystic fibrosis transmembrane regulator (CFTR), leading to increased chloride and water secretion from the enterocytes, and may thus explain the chronic diarrhea in the affected family members. CONCLUSIONS Increased GC-C signaling disturbs normal bowel function and appears to have a proinflammatory effect, either through increased chloride secretion or additional effects of elevated cellular cGMP. Further investigation of the relevance of genetic variants affecting the GC-C-CFTR pathway to conditions such as Crohn's disease is warranted. (Funded by Helse Vest Western Norway Regional Health Authority] and the Department of Science and Technology, Government of India.)
Resumo:
Purpose: Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Methods: Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Results: Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. Conclusions: This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3.
Resumo:
Dry eye syndrome (DES) is a complex, multifactorial, immune-associated disorder of the tear and ocular surface. DES with a high prevalence world over needs identification of potential biomarkers so as to understand not only the disease mechanism but also to identify drug targets. In this study we looked for differentially expressed proteins in tear samples of DES to arrive at characteristic biomarkers. As part of a prospective case-control study, tear specimen were collected using Schirmer strips from 129 dry eye cases and 73 age matched controls. 2D electrophoresis (2DE) and Differential gel electrophoresis (DIGE) was done to identify differentially expressed proteins. One of the differentially expressed protein in DES is lacrimal proline rich 4 protein (LPRR4). LPRR4 protein expression was quantified by enzyme immune sorbent assay (ELISA). LPRR4 was down regulated significantly in all types of dry eye cases, correlating with the disease severity as measured by clinical investigations. Further characterization of the protein is required to assess its therapeutic potential in DES.
Resumo:
The objective of this study was to report the clinical phenotype and genetic analysis of two Indian families with Escobar syndrome (ES). The diagnosis of ES in both families was made on the basis of published clinical features. Blood samples were collected from members of both families and used in genomic DNA isolation. The entire coding regions and intron-exon junctions of the ES gene CHRNG (cholinergic receptor, nicotinic, gamma), and two other related genes, CHRND and CHRNA1, were amplified and sequenced to search for mutations in both families. Both families show a typical form of ES. Sequencing of the entire coding regions including the intron-exon junctions of the three genes did not yield any mutations in these families. In conclusion, it is possible that the mutations in these genes are located in the promoter or deep intronic regions that we failed to identify or the ES in these families is caused by mutations in a different gene. The lack of mutations in CHRNG has also been reported in several families, suggesting the possibility of at least one more gene for this syndrome. Clin Dysmorphol 22:54-58 (C) 2013 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.