5 resultados para Swing-by

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a study of the growth of local, nonaxisymmetric perturbations in gravitationally coupled stars and gas in a differentially rotating galactic disk. The stars and gas are treated as two isothermal fluids of different velocity dispersions, with the stellar velocity dispersion being greater than that for the gas. We examine the physical effects of inclusion of a low-velocity dispersion component (gas) on the growth of non-axisymmetric perturbations in both stars and gas, as done for the axisymmetric case by Jog & Solomon. The amplified perturbations in stars and gas constitute trailing, material, spiral features which may be identified with the local spiral features seen in all spiral galaxies. The formulation of the two-fluid equations closely follows the one-fluid treatment by Goldreich & Lynden-Bell. The local, linearized perturbation equations in the sheared frame are solved to obtain the results for a temporary growth via swing amplification. The problem is formulated in terms of five dimensionless parameters-namely, the Q-factors for stars and gas, respectively; the gas mass fraction; the shearing rate in the galactic disk; and the length scale of perturbation. By using the observed values of these parameters, we obtain the amplifications and the pitch angles for features in stars and gas for dynamically distinct cases, as applicable for different regions of spiral galaxies. A real galaxy consisting of stars and gas may display growth of nonaxisymmetric perturbations even when it is stable against axisymmetric perturbations and/or when either fluid by itself is stable against non-axisymmetric perturbations. Due to its lower velocity dispersion, the gas exhibits a higher amplification than do the stars, and the amplified gas features are slightly more tightly wound than the stellar features. When the gas contribution is high, the stellar amplification and the range of pitch angles over which it can occur are both increased, due to the gravitational coupling between the two fluids. Thus, the two-fluid scheme can explain the origin of the broad spiral arms in the underlying old stellar populations of galaxies, as observed by Schweizer and Elmegreen & Elmegreen. The arms are predicted to be broader in gas-rich galaxies, as is indeed seen for example in M33. In the linear regime studied here, the arm contrast is shown to increase with radius in the inner Galaxy, in agreement with observations of external galaxies by Schweizer. These results follow directly due to the inclusion of gas in the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conventional metal oxide semiconductor field effect transistor (MOSFET)may not be suitable for future low standby power (LSTP) applications due to its high off-state current as the sub-threshold swing is theoretically limited to 60mV/decade. Tunnel field effect transistor (TFET) based on gate controlled band to band tunneling has attracted attention for such applications due to its extremely small sub-threshold swing (much less than 60mV/decade). This paper takes a simulation approach to gain some insight into its electrostatics and the carrier transport mechanism. Using 2D device simulations, a thorough study and analysis of the electrical parameters of the planar double gate TFET is performed. Due to excellent sub-threshold characteristics and a reverse biased structure, it offers orders of magnitude less leakage current compared to the conventional MOSFET. In this work, it is shown that the device can be scaled down to channel lengths as small as 30 nm without affecting its performance. Also, it is observed that the bulk region of the device plays a major role in determining the sub-threshold characteristics of the device and considerable improvement in performance (in terms of ION/IOFF ratio) can be achieved if the thickness of the device is reduced. An ION/IOFF ratio of 2x1012 and a minimum point sub-threshold swing of 22mV/decade is obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-component self-assembly of a cis-blocked 90 degrees Pd(II) acceptor with a mixture of a tetraimidazole and a linear dipyridyl donor self-discriminated into unusual Pd-8 molecular swing (1) and Pd-6 molecular boat (2), which are characterized by single-crystal X-ray diffraction analysis; their ability to bind C-60 in solution is established by fluorescence titration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low-surface-brightness galaxies are gas rich and yet have a low star formation rate; this is a well-known puzzle. The spiral features in these galaxies are weak and difficult to trace, although this aspect has not been studied much. These galaxies are known to be dominated by the dark matter halo from the innermost regions. Here, we do a stability analysis for the galactic disc of UGC 7321, a low-surface-brightness, superthin galaxy, for which the various observational input parameters are available. We show that the disc is stable against local, linear axisymmetric and non-axisymmetric perturbations. The Toomre Q parameter values are found to be large (>> 1) mainly due to the low disc surface density, and the high rotation velocity resulting due to the dominant dark matter halo, which could explain the observed low star formation rate. For the stars-alone case, the disc shows finite swing amplification but the addition of dark matter halo suppresses that amplification almost completely. Even the inclusion of the low-dispersion gas which constitutes a high disc mass fraction does not help in causing swing amplification. This can explain why these galaxies do not show strong spiral features. Thus, the dynamical effect of a halo that is dominant from inner regions can naturally explain why star formation and spiral features are largely suppressed in low-surface-brightness galaxies, making these different from the high-surface-brightness galaxies.